Electronic supplementary information

Approximate quantum chemical methods for modelling carbohydrate conformation and aromatic interactions: β cyclodextrin and its adsorption on a single-layer graphene sheet

Panichakorn Jaiyong and Richard A. Bryce*

Division of Pharmacy and Optometry, University of Manchester, Oxford Road, Manchester

M13 9PL, UK

cccw

cwcw

cwcc

O-cwcw

O-cccc

parentheses.							
Coordinate	cccw	сссс	cwcw	cwcc	O-cwcw	O-cccc	X-ray ^a
α (0404'04")	128.6	128.5	128.6	128.6	128.6	128.5	129+2
	(0.31)	(0.62)	(0.10)	(0.19)	(0.14)	(0.17)	128±2
θ (C1O4'C4')	118.9	119.1	118.7	118.9	119.9	119.5	110 1
	(0.05)	(0.12)	(0.03)	(0.04)	(0.03)	(0.06)	118±1
Φ (C2C1O4'C4')	221.8	222.2	220.8	221.3	232.9	232.6	221.0
	(0.52)	(1.00)	(0.27)	(0.35)	(0.50)	(2.66)	231±6
τ (0404'04"'04"'')	0.0	0.0	0.0	0.0	0.0	0.0	0.2+0
	(0.42)	(1.20)	(0.31)	(0.54)	(0.86)	(2.70)	0.2±9
Г (С1С2С3С4)	308.6	307.4	308.9	307.6	305.4	304.0	20(12
	(0.09)	(0.13)	(0.05)	(0.05)	(0.07)	(0.20)	306±3
Θ (C2C3C4C5)	55.0	56.4	55.0	56.4	53.2	55.1	55+2
	(0.04)	(0.12)	(0.05)	(0.07)	(0.15)	(0.15)	55±3
T (C3C4C5O5)	300.4	300.2	300.3	300.1	306.3	305.4	204+4
	(0.17)	(0.37)	(0.06)	(0.11)	(0.27)	(0.26)	304±4
<u> </u>	183.0	182.2	183.5	182.6	188.2	186.5	100+4
	(0.26)	(0.57)	(0.09)	(0.15)	(0.24)	(0.31)	188±4
Z (O4C4C5C6)	62.4	61.5	63.2	62.2	71.6	68.5	60+5
	(0.33)	(0.66)	(0.12)	(0.20)	(0.33)	(0.29)	09±3
Λ (04'C105C5)	57.9	57.9	58.2	58.1	59.6	59.2	50+2
	(0.20)	(0.38)	(0.04)	(0.07)	(0.14)	(0.07)	59-2
П (С4С5О5С1)	65.2	64.1	65.6	64.6	60.5	59.0	50+3
	(0.21)	(0.43)	(0.06)	(0.08)	(0.16)	(0.26)	39±3
K (02C2C105)	176.8	178.1	176.2	177.4	179.3	181.1	179+2
	(0.05)	(0.06)	(0.03)	(0.05)	(0.07)	(0.19)	1/8±3
Y (O3C3C4C5)	126.1	177.1	126.3	177.3	122.7	174.9	176+2
	(0.06)	(0.08)	(0.05)	(0.06)	(0.13)	(0.24)	1/0±2
E (O4'C1C4C5)	288.2	287.0	288.7	287.5	284.9	282.9	285±3

Table S1 Geometrical data for β CD structures optimised at the M06-2X/def2-TZVPP level of theory. Angles are mean values (averaged over glucosyl residue) in degrees. Standard errors of mean in parentheses.

(0.04)

(0.08)

(0.18)

(0.30)

(0.11)

(0.23)

Ω (05C5C6O6)	118.9	118.1	96.9	96.3	167.8	59.2	
	(1.26)	(2.42)	(0.49)	(0.66)	(0.69)	(0.45)	198±123
Ξ (C4C5C6O6)	238.9	238.7	216.8	216.7	286.8	179.5	110.70
	(1.25)	(2.37)	(0.50)	(0.67)	(0.69)	0.01	112±70
ψ (O2C2C3O3)	65.6	62.4	65.7	62.5	61.5	58.9	(2)(1)
	(0.08)	(0.15)	(0.04)	(0.04)	(0.11)	(0.22)	63.6±2.1

^aX-ray diffraction data from T. Heine, H. F. Dos Santos, S. Patchkovskii and H. A. Duarte, J. Phys. Chem. A, 2007, 111, 5648-5654; K. Lindner and W. Saenger, Carbohydr. Res., 1982, 99, 103-115.

Table S2 Intramolecular interresidue hydrogen bond distances (in Å) at C2C3 rim of β CD geometries optimised at different levels of theory. For (O-)xxcw conformers, these distances are for O3-H…O2'; for (O-)xxcc conformers, these distances are for O3…H-O2'.

ACD	M06-2X/def2-TZVPP											DF	ГВЗ			
peb	glu1	glu2	glu3	glu4	glu5	glu6	glu7	avr	glu1	glu2	glu3	glu4	glu5	glu6	glu7	avr
cccw	2.11	2.09	2.13	2.11	2.08	2.12	2.13	2.11	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03
сссс	2.14	2.15	2.09	2.11	2.17	2.09	2.13	2.12	2.04	2.03	2.04	2.04	2.04	2.04	2.03	2.04
cwcw	2.13	2.12	2.14	2.12	2.13	2.14	2.14	2.13	2.04	2.04	2.04	2.04	2.04	2.04	2.04	2.04
cwcc	2.15	2.15	2.14	2.13	2.15	2.13	2.14	2.14	2.05	2.05	2.05	2.05	2.05	2.04	2.05	2.05
O-cwcw	1.90	1.87	1.88	1.89	1.89	1.88	1.87	1.88	1.82	1.82	1.82	1.82	1.82	1.82	1.82	1.82
O-cccc	1.96	1.92	1.93	1.95	1.92	1.96	1.92	1.94	1.83	1.83	1.84	1.86	1.85	1.83	1.80	1.83
<i>β</i> CD				PN	47							PM6	-DH2			
	glu1	glu2	glu3	glu4	glu5	glu6	glu7	avr	glu1	glu2	glu3	glu4	glu5	glu6	glu7	avr
cccw	2.07	2.07	2.07	2.07	2.07	2.07	2.07	2.07	1.88	1.89	1.89	1.88	1.89	1.89	1.89	1.89
сссс	2.06	2.06	2.05	2.06	2.06	2.05	2.05	2.06	1.89	1.89	1.89	1.89	1.89	1.89	1.89	1.89
cwcw	2.08	2.08	2.08	2.07	2.08	2.08	2.07	2.08	1.89	1.89	1.89	1.89	1.89	1.89	1.89	1.89
cwcc	2.06	2.06	2.06	2.06	2.06	2.06	2.06	2.06	1.90	1.89	1.89	1.90	1.90	1.89	1.89	1.89
O-cwcw	1.71	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.79	1.78	1.79	1.79	1.78	1.78	1.79	1.78
O-cccc ^a	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.89	1.89	1.89	1.90	1.88	1.95	1.96	1.91
<i>β</i> CD				PM	6-D3							PN	M6			
	glu1	glu2	glu3	glu4	glu5	glu6	glu7	avr	glu1	glu2	glu3	glu4	glu5	glu6	glu7	avr
cccw	1.91	1.91	1.92	1.91	1.91	1.91	1.92	1.91	2.02	2.02	2.02	2.02	2.02	2.02	2.02	2.02
сссс	1.94	1.94	1.93	1.94	1.95	1.93	1.93	1.94	2.04	2.04	2.03	2.04	2.04	2.03	2.03	2.04
cwcw	1.91	1.91	1.91	1.91	1.91	1.91	1.91	1.91	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03
cwcc	1.94	1.94	1.93	1.93	1.94	1.93	1.93	1.93	2.05	2.04	2.04	2.04	2.04	2.04	2.04	2.04
O-cwcw	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1.84	1.83	1.84	1.84	1.83	1.83	1.83	1.83
O-cccc ^a	1.94	1.93	1.94	1.97	1.94	1.93	1.95	1.94	2.05	2.03	2.05	2.07	2.04	2.03	2.06	2.05
<i>β</i> CD	PM3CARB-1								PM3-D*							
	glu1	glu2	glu3	glu4	glu5	glu6	glu7	avr	glu1	glu2	glu3	glu4	glu5	glu6	glu7	avr
cccw	1.93	1.93	1.93	1.93	1.93	1.93	1.93	1.93	1.86	1.86	2.62	2.43	1.85	2.61	2.44	2.24

сссс	1.89	1.89	1.89	1.89	1.89	1.89	1.89	1.89	2.53	2.68	1.86	2.61	2.70	1.86	2.59	2.40
cwcw	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	2.40	2.40	2.40	2.40	2.40	2.40	2.40	2.40
cwcc	1.89	1.89	1.89	1.89	1.88	1.89	1.89	1.89	2.52	2.52	2.52	2.52	2.52	2.52	2.52	2.52
O-cwcw	1.83	1.83	1.83	1.83	1.83	1.83	1.83	1.83	1.81	1.81	1.81	1.81	1.81	1.81	1.81	1.81
O-cccc	1.84	1.84	1.84	1.84	1.84	1.84	1.84	1.84	1.81	1.81	1.81	1.81	1.81	1.81	1.81	1.81
<i>B</i> CD	PM3											AI	M1			
^	glu1	glu2	glu3	glu4	glu5	glu6	glu7	avr	glu1	glu2	glu3	glu4	glu5	glu6	glu7	avr
cccw	1.87	1.86	2.60	1.87	1.87	1.86	2.60	2.08	2.13	2.14	2.13	2.13	2.14	2.14	2.13	2.13
сссс	2.52	2.68	1.86	2.60	2.69	1.86	2.57	2.40	2.16	2.16	2.15	2.16	2.16	2.16	2.15	2.16
cwcw	1.86	1.86	2.60	1.87	1.86	2.58	2.42	2.15	2.14	2.14	2.13	2.13	2.14	2.14	2.13	2.14
cwcc	2.52	2.51	2.51	2.51	2.52	2.51	2.51	2.51	2.17	2.16	2.16	2.16	2.16	2.16	2.16	2.16
O-cwcw	1.81	1.81	1.81	1.81	1.81	1.81	1.81	1.81	2.15	2.15	2.14	2.14	2.14	2.13	2.14	2.14
O-cccc ^a	1.81	1.81	1.81	1.81	1.81	1.81	1.81	1.81	2.18	2.16	2.17	2.18	2.14	2.19	2.16	2.17

^aCollapsed open structure labelled in *italics*

Table S3 Intramolecular interresidue hydrogen bond distances (in Å) at C6 rim of β CD geometries optimised at different levels of theory. For cwxx conformers, these distances are for O6-H…O6'; for ccxx conformers, these distances are for O6-…H-O6'. For the O-cwcw, these distances are for O6-H…O5'; for O-cccc, no interresidue hydrogen bonds were present at the C6 rim.

ßCD	M06-2X/def2-TZVPP								DFTB3							
peb	glu1	glu2	glu3	glu4	glu5	glu6	glu7	avr	glu1	glu2	glu3	glu4	glu5	glu6	glu7	avr
cccw	1.82	1.83	1.83	1.84	1.83	1.82	1.83	1.83	1.80	1.80	1.80	1.80	1.80	1.80	1.80	1.80
сссс	1.83	1.84	1.84	1.85	1.85	1.83	1.84	1.84	1.80	1.80	1.80	1.80	1.80	1.80	1.80	1.80
cwcw	1.86	1.87	1.88	1.87	1.87	1.88	1.87	1.87	1.80	1.80	1.80	1.80	1.80	1.80	1.80	1.80
cwcc	1.86	1.88	1.89	1.87	1.88	1.89	1.88	1.88	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79
O-cwcw	1.90	1.92	1.90	1.90	1.90	1.91	1.91	1.90	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92
O-cccc	3.91	3.90	3.89	3.79	3.90	3.98	4.02	3.91	4.80	4.67	4.90	4.25	4.42	4.91	5.43	4.77
ßCD		1		PN	47							PM6	-DH2			
μeb	glu1	glu2	glu3	glu4	glu5	glu6	glu7	avr	glu1	glu2	glu3	glu4	glu5	glu6	glu7	avr
cccw	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79
сссс	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.79	1.80	1.79	1.79	1.80	1.79	1.79	1.79
cwcw	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79
cwcc	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79
O-cwcw	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.94	1.95	1.94	1.94	1.95	1.95	1.94	1.94
O-cccc ^a	2.05	2.05	2.06	2.06	2.05	2.05	2.06	2.05	1.77	1.79	1.81	1.80	1.78	1.77	1.78	1.78
₿CD		1	I	PM	6-D3					1		PN	A6			
<i>p</i>	glu1	glu2	glu3	glu4	glu5	glu6	glu7	avr	glu1	glu2	glu3	glu4	glu5	glu6	glu7	avr
cccw	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1.86	1.86	1.86	1.86	1.86	1.86	1.86	1.86
сссс	1.78	1.78	1.77	1.78	1.77	1.77	1.77	1.77	1.87	1.87	1.86	1.87	1.87	1.87	1.87	1.87
cwcw	1.75	1.76	1.76	1.75	1.75	1.76	1.75	1.75	1.82	1.83	1.83	1.82	1.83	1.83	1.82	1.83
cwcc	1.75	1.77	1.76	1.75	1.76	1.76	1.76	1.76	1.83	1.85	1.84	1.83	1.84	1.85	1.83	1.84
O-cwcw	1.88	1.88	1.87	1.87	1.88	1.88	1.87	1.88	1.99	2.01	1.99	1.99	1.99	2.00	1.99	1.99
O-cccc ^a	1.77	1.75	1.78	1.78	1.75	1.77	1.78	1.77	1.86	1.85	1.87	1.88	1.85	1.87	1.88	1.87
βCD	PM3CARB-1								PM3-D*							
	glu1	glu2	glu3	glu4	glu5	glu6	glu7	avr	glu1	glu2	glu3	glu4	glu5	glu6	glu7	avr

cccw	1.86	1.86	1.85	1.85	1.86	1.86	1.85	1.86	1.83	1.82	1.83	1.83	1.82	1.84	1.85	1.83
сссс	1.86	1.86	1.86	1.86	1.86	1.86	1.86	1.86	1.82	1.82	1.84	1.83	1.82	1.84	1.83	1.83
cwcw	1.85	1.85	1.85	1.85	1.85	1.85	1.85	1.85	1.82	1.82	1.82	1.82	1.82	1.82	1.82	1.82
cwcc	1.85	1.85	1.85	1.85	1.85	1.85	1.85	1.85	1.83	1.83	1.83	1.83	1.83	1.83	1.83	1.83
O-cwcw	1.93	1.93	1.93	1.93	1.93	1.93	1.93	1.93	1.86	1.86	1.86	1.86	1.86	1.86	1.86	1.86
O-cccc	2.57	2.55	2.57	2.57	2.55	2.56	2.57	2.56	3.39	3.39	3.39	3.39	3.39	3.39	3.39	3.39
βCD	PM3								AM1							
	glu1	glu2	glu3	glu4	glu5	glu6	glu7	avr	glu1	glu2	glu3	glu4	glu5	glu6	glu7	avr
										_						
cccw	1.83	1.85	1.86	1.85	1.82	1.84	1.85	1.84	2.15	2.15	2.15	2.15	2.15	2.15	2.14	2.15
cccw cccc	1.83 1.82	1.85 1.82	1.86 1.84	1.85 1.83	1.82 1.82	1.84 1.85	1.85 1.83	1.84 1.83	2.15 2.16	2.15 2.16	2.15 2.16	2.15 2.16	2.15 2.17	2.15 2.16	2.14 2.15	2.15 2.16
cccw cccc cwcw	1.83 1.82 1.85	1.85 1.82 1.84	1.86 1.84 1.83	1.85 1.83 1.85	1.82 1.82 1.84	1.84 1.85 1.82	1.85 1.83 1.83	1.84 1.83 1.84	2.15 2.16 2.14	2.15 2.16 2.14	2.15 2.16 2.15	2.15 2.16 2.14	2.15 2.17 2.14	2.15 2.16 2.15	2.14 2.15 2.15	2.15 2.16 2.14
cccc cccc cwcw cwcc	1.83 1.82 1.85 1.83	1.85 1.82 1.84 1.83	1.86 1.84 1.83 1.83	1.85 1.83 1.85 1.83	1.82 1.82 1.84 1.83	1.84 1.85 1.82 1.83	1.85 1.83 1.83 1.83	1.84 1.83 1.84 1.83	2.15 2.16 2.14 2.15	2.15 2.16 2.14 2.16	2.15 2.16 2.15 2.16	2.15 2.16 2.14 2.15	2.15 2.17 2.14 2.15	2.15 2.16 2.15 2.16	2.14 2.15 2.15 2.16	2.15 2.16 2.14 2.16
ccccw ccccc cwccw cwccc O-cwccw	1.83 1.82 1.85 1.83 1.83	1.85 1.82 1.84 1.83 1.86	1.86 1.84 1.83 1.83 1.86	1.85 1.83 1.85 1.83 1.83 1.83	1.82 1.82 1.84 1.83 1.86	1.84 1.85 1.82 1.83 1.86	1.85 1.83 1.83 1.83 1.83	1.84 1.83 1.84 1.83 1.83 1.83	2.15 2.16 2.14 2.15 3.17	2.15 2.16 2.14 2.16 3.65	2.15 2.16 2.15 2.16 3.22	2.152.162.142.153.28	2.15 2.17 2.14 2.15 3.47	2.15 2.16 2.15 2.16 3.38	2.14 2.15 2.15 2.16 3.36	2.15 2.16 2.14 2.16 3.36

^aCollapsed open structure labelled in *italics*

Method	E _{cc-cw}	Method	E _{cc-cw}
HM-IE est. of CCSD(T)/cc-pVQZ ^a	0.35	DFTB3	0.59
MP2/def2-TZVPP	0.71	SCC-DFTB	0.42
MP2/aug-cc-pVTZ	0.73	PM7	-0.93
MP2/cc-pVDZ ^b	0.30	PM6-DH2	-1.30
M06-2X/def2-TZVPP	0.32	PM6-D3	-1.27
ωB97X-D/def2-TZVPP	0.17	PM6	-1.07
		PM3CARB-1	1.10
		PM3-D*	-1.39
		PM3	-1.39
		AM1	-0.88

Table S4 The relative energy (in kcal/mol) between cc/gGg^- and cw/tGg^- conformers, E_{cc-cw} .

^aRef. 45 ^bRef. 17

diols	MP2	2/def2-TZ	VPP	MP2	/aug-cc-p	VTZ	M06-2	X/def2-T	ZVPP	ω B97X	-D/def2-T	ZVPP
	φ1	Ψ	φ2	φ1	Ψ	φ2	φ1	Ψ	φ2	φ1	Ψ	φ ₂
cc/gGg-	73	57	-43	74	57	-44	73	57	-43	72	58	-43
cw/tGg-	-168	61	-50	-167	62	-51	-168	61	-51	-167	62	-52
d: .] .		DFTB3		S	CC-DFT	B		PM7		I	PM6-DH2	
ulois	φ1	Ψ	φ2	φ1	ψ	φ ₂	φ1	Ψ	φ ₂	φ1	Ψ	φ ₂
cc/gGg-	65	49	-25	61	54	-31	67	65	-42	73	52	-35
cw/tGg-	-178	51	-39	-177	58	-45	-176	80	-58	-173	89	-62
dials		PM6-D3			PM6		PI	M3CARB	-1		PM3D*	
uiois	φ1	Ψ	φ2	φ1	ψ	φ ₂	φ1	Ψ	φ ₂	φ1	Ψ	φ ₂
cc/gGg-	69	63	-43	68	76	-52	80	65	-49	64	70	-52
cw/tGg-	-173	84	-61	-175	94	-66	-179	66	-63	-175	75	-61
dials		PM3			AM1							
uiois	φ1	ψ	φ2	φ1	ψ	φ ₂						
cc/gGg ⁻	64	70	-51	66	60	-44						
cw/tGg-	-174	75	-62	-175	64	-56						

Table S5 1,2-ethanediols geometries optimised at ab initio, DFT and semiempirical QM levels of theory^a

^{*a*}1,2-ethanediol structure shown in Figure 2; Dihedral angles in degrees: φ_1 (H_bO_bC_bC_a) ψ (O_aC_aC_bO_b) φ_2

 $(H_aO_aC_aC_b)$

Table S6 Average distance between O atoms of the C2C3 rim of β CD and the graphene basal plane of β CD/C₉₆H₂₄ complexes (in Å) for DFT and semiempirical QM methods. Hydrogen bond network is underlined for the C2C3 rim.

Conformer	M06-2X/def2-SVP	DFTB3	PM7	PM6-DH2
cc <u>cw</u>	2.96	3.05	2.92	3.10
cc <u>cc</u>	2.98	3.04	2.85	3.07

Table S7 Interaction energies (IE) of β CD/C₁₀₀₆H₈₈ complexes per glucosyl residue, calculated via PM6-DH2, PM7 and DFTB3 methods at C2C3 and C6 rims with respect to global energy minimum cccw conformer. Collapsed open structures labelled in italics. Energies in kcal/mol.

Careformer	C2C	C3 adsorbed	rim	C6 adsorbed rim					
Conformer	DFTB3	PM7	PM6-DH2	DFTB3	PM7	PM6-DH2			
cccw	-7.9	-8.9	-4.4	-4.9	-7.5	-3.5			
сссс	-7.4	-10.0	-6.7	-5.1	-8.7	-5.7			
cwcw	-7.2	-8.6	-4.3	-3.8	-7.2	-3.7			
cwcc	-6.4	-9.9	-6.4	-4.1	-8.4	-5.5			
O-cwcw	-5.1	-5.6	0.6	-4.2	-4.0	1.5			
O-cccc	-3.4	-9.0	-7.8	-1.6	-7.7	-5.6			

Table S8 Interaction energies (IE) of β CD/C₁₀₀₆H₈₈ complexes per glucosyl residue, corrected for understabilisation of cccw conformer, calculated via PM6-DH2, PM7 and DFTB3 methods at C2C3 and C6 rims with respect to global energy minimum cccw conformer. Collapsed open structures labelled in italics. Energies in kcal/mol.

Conformer	C2C3	3 adsorl	bed rim	C6 adsorbed rim					
	DFTB3	PM7	PM6-DH2	DFTB3	PM7	PM6-DH2			
cccw	-7.9	-8.9	-4.4	-0.1	-7.5	-3.5			
сссс	-8.1	-8.7	-4.7	-0.2	-7.4	-3.7			
cwcw	-7.8	-8.7	-4.3	-0.2	-7.3	-3.8			
cwcc	-5.3	-8.6	-4.4	0.1	-7.1	-3.5			
O-cwcw	-4.9	-7.4	-2.1	-0.1	-5.7	-1.2			
O-cccc	-4.7	-7.7	-5.8	-0.2	-6.4	-3.6			