
Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2017

Supplementary material

Fig. S1 The correlation between energy and temperature of Ni₃₅Zr₆₅, Ni₅₀Zr₅₀ and Ni₆₅Zr₃₅ alloy upon rapidly quenching with the cooling rate of 10^{13} K/s. One notes that the glass transition temperature T_g of Ni₃₅Zr₆₅, Ni₅₀Zr₅₀ and Ni₆₅Zr₃₅ alloy are about 1000 K, 1100 K and 1200 K, respectively. In addition, all the alloy melts were first equilibrated at 2000 K for 200 ps, to reach relatively stable states at which the related dynamic variables show no secular variation, and then rapidly quenched down to the room temperature, obtaining the metallic glasses.

Fig. S2 The fraction of activating atoms $p(d \ge d^*)$ as a function of temperature T for Ni₃₅Zr₆₅, Ni₅₀Zr₅₀ and Ni₆₅Zr₃₅ alloys, respectively.

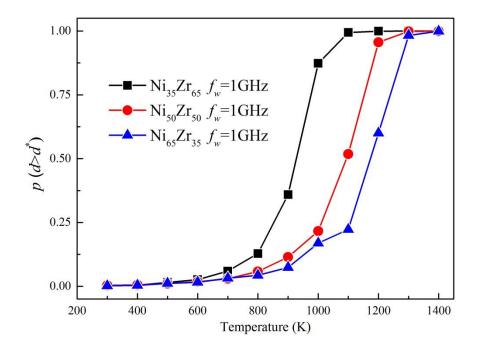
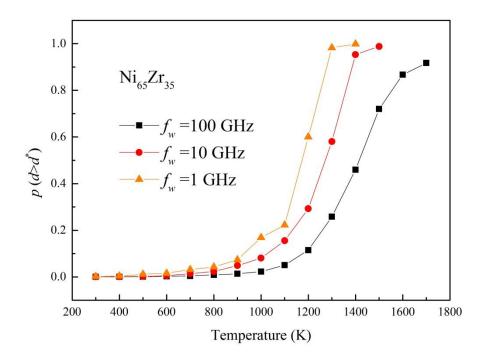



Fig. S3 The fraction of the activating atoms in $Ni_{65}Zr_{35}$ alloy with different frequency sinusoidal strain. It is shown that the maturating temperature correlates to the applying sinusoidal strain with frequencies.

