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Figure S1. Pictorial presentation of the computed AE|ga g = E(IQA) — E values for the Eclipsed and
Linear conformers of glycol at the indicated levels of theory and approximation.
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Figure S2. Variation in the AE,qag Values expressed as the %-fraction of a molecular energy of each
conformer of glycol at indicated levels of theory and approximation.
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Very much the same trends are observed for all conformers in Figure S2 and, as an example,
we obtained AE oa g values as 2.6x10*, 4.8x10 % and 1.2x10 ‘% of molecular energy E for the
LEC when BBC1, BBC2 and Miiller approximation was used, respectively. In principle, it
mimics the general trends seen in Figure 2 or Table 1 in the main body of the text. However,
we have noted that the trends in the %-fractions are not the same at each level of theory, e.g.,
we found (%-fraction)ccsp < (%-fraction)ccspm < (%-fraction)vpe, for the LEC but (%-

fraction)ccsp < (%-fraction)up, < (%-fraction)ccsp(r) for Ecl and Lin when BBC1 was used.
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Figure S3. Variation, with the LoT/LoA combination, in the computed total self-molecular energy
expressed as a %-fraction of a molecular energy of the indicated conformers of glycol.

Note that the first column in Figure S3 (data produced by CCSD/BBC1) represents the

expectation value one should obtain for any other LoT/LoA combination provided no errors are

present in the computed self-molecular energy.
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Figure S4. Errors (as —Azzltf values in Table 2 of the main body of the text) in the computed total self-

molecular energy of the Eclipsed and Linear conformers at the indicated LoT/LoA combination.
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Figure S5. Relative to CCSD/BBC1 data, errors in computed self-atomic energies of the LEC of glycol
at the indicated LoTs using BBC2 approximation.

S7



Eclipsed
BBC1

= CCSD(T)
= MP2

Error in Eg(X) (kcal/mol)

mCCSD
mCCSD(T)
uMP2

Eclipsed
BBC2

Error in Eg(X) (kcal/mol)

60 - .
Eclipsed

50 - Mu"er
40 - m CCSD

= CCSD(T)
= MP2

30 -

20 A

10 -

0 -

Error in Ego(X) (kcal/mol)

C1 C2 O3 04 H5 H6 H7 H8 H9 H10

-10 -

Figure S6. Relative to CCSD/BBCL data, errors in computed self-atomic energies of the Eclipsed
conformer of glycol at the indicated LoT/LoA combination.
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Figure S7. Relative to CCSD/BBC1 data, errors in computed self-atomic energies of the Linear
conformer of glycol at the indicated LoT/LoA combination.
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Figure S8. Relative to CCSD/BBC1, errors in the computed diatomic interactions in the LEC of glycol

at CCSD using the BBC2 and Miiller approximations.
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Figure S9. Relative to CCSD/BBCL1, errors in the computed diatomic interactions in the Eclipsed
conformer of glycol at CCSD using the BBC2 and Miiller approximations.
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Figure S10. Relative to CCSD/BBCL, errors in the computed diatomic interactions in the Linear
conformer of glycol at CCSD using the BBC2 and Miiller approximations.
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Figure S11. Relative to CCSD/BBC1, errors in the computed diatomic interactions in the LEC of
glycol at CCSD(T) using the BBC1, BBC2 and Miiller approximations.
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Figure S12. Relative to CCSD/BBC1, errors in the computed diatomic interactions in the Eclipsed
conformer of glycol at CCSD(T) using the BBC1, BBC2 and Miiller approximations.
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Figure S13. Relative to CCSD/BBC1, errors in the computed diatomic interactions in the Linear
conformer of glycol at CCSD(T) using the BBC1, BBC2 and Miiller approximations.
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Figure S14. Relative to CCSD/BBC1, errors in the computed diatomic interactions in the LEC of
glycol at MP2 using the BBC2 and Miller approximations.
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Figure S15. Relative to CCSD/BBCL1, Errors in the computed diatomic interactions in the Eclipsed
conformer of glycol at MP2 using the BBC1, BBC2 and Miiller approximations.
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Figure S16. Relative to CCSD/BBC1, errors in the computed diatomic interactions in the Linear
conformer of glycol at MP2 using the BBC1, BBC2 and Miiller approximations.
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Table S1. FAMSEC-based description of the {O3-H6---O4} molecular fragment in the LEC showing
the AEZ , AE%, EZ AEZ* ‘and E% _indices computed on the Lin—LEC structural change at the

self ! int? attr-loc ! int ! attr-mol

CCSD, CCSD(T) and MP2 levels of theory using the BBC1, BBC2 and Miiller approximations. All
values in kcal/mol.

Level of AEZ, AE: Extrtoc AEi%t?f Estr-mol
theory BBC1
CCSD 7.0 -11.0 -4.0 -5.6 -9.5
CCSD(T) 7.4 -10.4 -3.0 -7.5 -10.5
MP2 8.5 -11.8 -3.3 -3.1 -6.3
Avr: 7.6 -11.1 -3.4 -5.4 -8.8
Std.Dev. 0.8 0.7 0.5 2.2 2.2
BBC2
CCSD 6.2 -11.4 -5.1 -6.7 -11.8
CCSD(T) 6.5 -10.9 -4.4 -8.6 -13.0
MP2 7.3 -12.4 -5.2 -3.3 -8.4
Auvr: 6.7 -11.6 -4.9 -6.2 -11.1
Std.Dev. 0.5 0.8 0.4 2.7 2.4
Mdller
CCsD 9.3 -10.8 -1.4 -2.2 -3.6
CCSD(T) 9.6 -10.6 -1.1 -2.5 -3.5
MP2 10.1 -11.0 -0.9 -1.4 -2.3
Auvr: 9.7 -10.8 -1.1 -2.0 -3.1
Std.Dev. 0.4 0.2 0.3 0.5 0.7
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Figure S18. Energy terms, AEZ. = (1), AEY = (2), EZ .= (3), AEZ" = (4) and EZ __, = (5),

computed for the G = {C1,03,04,H6} fragment at the indicated level of theory and approximation for
the Lin—LEC structural change of glycol.
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computed for the molecular fragment & = {O3,04} at the indicated level of theory and approximation
for the Lin—Ecl structural change of glycol.
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Figure S20. Energy terms, AEY, as (1), AEZ as (2), EZ .. as (3), AEZ" as (4), and EZ . as (5),

computed for the molecular fragment G = {03,04,H5,H6} at the indicated level of theory and
approximation for the Lin—Ecl structural change of glycol.

S23



C2 O3 04 H5 H6 H7

AEg«(X) (kcal/mol)

MP2
Linear - LEC

mBBC1
mBBC2
= Muller

Figure S21. Change in self-atomic energy at MP2 on the Lin—LEC structural change obtained using

indicated approximations.

2.5
MP2

20 Linear —» LEC

1.54 u

[
1.0 1

0.5 -

0.0 -

AAE 1(X) (kcal/mol)

-0.5 4

-1.0 -

BBC1
BBC2
Miiller

Figure S22. Relative to CCSD/BBC1, differences in computed at MP2/LoA level changes in self-

atomic energies on the Lin—LEC structural change.

S24



25 CCSD/BBC1
:°~ Linear»LEC
£
©
o
5 T N T -—-\__; T T
—_ [ H7 H8 H9 H10
7
x uC1
I.I'.;_: uC2
< =03
m 04
16 -
mH5
o T CCSD/BBC1 L
©° 12 Linear—LEC
£ wH7
< 10 -
8 mH8
. '8 mH9
S 6]
x
g
< 2
0 - r r -f — r —
5 H6 H7 H8 H9 H10

Figure S23. Change in diatomic interaction energies on the Lin—LEC structural change obtained at
the CCSD/BBC1 level.
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Importance of AE(IQA) ~ 0 in the FAMSEC analysis

It is suggested that the departure of AEgae from zero might be tolerated in comparative
analysis, such as FAMSEC, provided that the difference between E(IQA) computed for the fin-
state and ref-state of the molecular system approaches zero.

This suggestion can be supported by making use of expressions that incorporate unavoidable
computational errors. Just as an example, let us start with the self-molecular energy for which
largest errors were obtained, but the same reasoning applies to individual self-atomic as well as

interaction energy terms. For the final state of a molecular system we can write
Tot _ (=Tot Y Tot
(Ese?f )fin-state - (Eself )ﬁnfstate + (errselof )fin-state : (Sl)

Exactly the same expression can be written for the ref-state (recall that # refers to the exact and,
in principle, unknown value). In comparative analysis, the main focus is on the change in the
selected property when the transformation from the ref-state to fin-state takes place. Hence, in

this specific example we would monitor
A( E;(I)ft) =( E;Tft Yrin-state — ( EsTe(l)ft Iref-state - (S2)

This work has demonstrated that due to the same (i) level of theory and approximation and (ii)
parameters selected in the IQA calculations used for the two molecular states, the errors of

almost the same value are generated,
T T
(errse:)ft )fin—state ~ (errSeﬁt )ref—state (83)

Hence, on computing the change in self-molecular energies when ref-state — fin-state,
cancellation of errors takes place and, as a result, the computed difference can be seen as

acceptable approximation of variation in the exact self-molecular energies,
# #
AMCES) = (B v e — Bt ot e - (s4)

fin—state ref —state

The difference in IQA molecular energies between the two molecular states, AE(IQA) =
E(IQA)fin—state - E(IQA)ref-state, can be written as

_ Tot V¥ Tot V¥ Tot Tot
AE(IQA) - (E36|f )fin—state + (Eint )ﬁn—state + (errself )fin—state + (errint )fin—state (85)
(E Tot )# (E Tot )# rI,Tot rrTot
- self Jref —state int Jref-state (e self )ref—state - (e int )ref—state
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Eqg. S5 demonstrates that when the IQA-generated errors in fin- and ref-state of a molecule are
nearly the same then the AE(IQA) should be very close to the difference in electronic energy of
the two molecular states, such as two conformers. Clearly, the smaller difference between
AE(IQA) and AE = Efinstate — Eref-state; N€NCe When A(AEioag) = (AEiga E)fin-state — (AE 1A E)ref-state
— 0, then the better quality (more reliable) FAMSEC-defined energy terms are.
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