Enlargement of the organic solid-state DFB laser wavelength tuning range by the use of two complementary luminescent dyes doped into the host matrix

Kacper Parafiniuk^{*}, Lech Sznitko, Dominika Wawrzynczyk, Andrzej Miniewicz and Jaroslaw Mysliwiec

Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland

* Corresponding author e-mail: <u>kacper.parafiniuk@pwr.edu.pl</u>

Electronic Supplementary Information (ESI)

ESI contains additional data excluded from the main article. Presented figures and tables support details but are not essential for understanding of the paper.

List of contents:

- 1. Figure S1 Luminescence decay curves of DCNP crystals for selected dye-doped polymers measured at room temperature.
- 2. Figure S2 Deconvolution of biexponential DCNP crystal luminescence decay into two components as a function of relative A/D weight ratios in the samples.
- 3. Table S1 Relative amplitudes of biexponential DCNP crystal luminescence decay time constants for studied samples.
- 4. Table S2 pumping light energy densities for the STE spectra shown in Fig. 4 of the main article.

Fig. S1. Normalized luminescence decay curves for selected samples containing DCNP crystals and different amounts of Rh700 dye, monitored at the wavelength of $\lambda_{em} = 600$ nm. Instrument response function (IRF) is marked in black.

Fig. S2. Two components of DCNP crystal luminescence lifetime, τ_1 and τ_2 (red squares and blue circles, respectively), measured at the wavelength of $\lambda_{em} = 600$ nm for different relative A/D weight ratios in the samples. Stacked bars represent relative amplitudes of the luminescence signals associated with respective time constants for each sample.

constants, τ_1 and	τ_2 , for different relat	ive A/D weight ratios	in the studied material	s, corresponding
to the Fig. S2.				
	Rh700/DCNP	Amplitude of τ_1	Amplitude of τ_2	

Tab. S1. Relative amplitudes A_1 and A_2 of luminescence signal associated with decay time

	I	T
w/w ratio	A_1 [%]	A_2 [%]
1.0	87	13
0.75	85	15
0.5	84	16
0.25	76	24
0.15	86	14
0.1	88	12
7.5×10 ⁻²	89	11
5.0×10 ⁻²	87	13
2.5×10 ⁻²	86	14
0 (DCNP)	88	12

Tab. S2. Energy densities of $\lambda_{pump} = 532$ nm pulsed Nd:YAG pumping light for excitation of STE, for the spectra presented in Fig. 4 of the main article.

Rh700/DCNP	Energy density of pumping beam
w/w ratio	$ ho_{pump} \ [mJ/cm^2]$
1.0	5.5
0.75	5.5
0.5	5.5
0.25	3.8
0.15	19.1
0.1	5.5
7.5×10 ⁻²	5.5
5.0×10 ⁻²	3.8
2.5×10 ⁻²	5.5
0 (DCNP)	3.8