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S1 . Normalized SFG spectra of water at the silica surface 

In the manuscript, we show the raw SFG spectra taken from the silica/water interface. 

For comparison, Figure S1 presents the same spectra shown in Figure 1, after 

normalization by the non-resonant signal from a chromium-free gold coated silica window. 

The double feature in the O-H stretch region reported previously1 is reproduced.  

 

Figure S1: Normalized SFG spectra of the silica / water interface obtained from the raw data shown in 

Figure 1, normalized by the non-resonant signal from a chromium-free gold coated silica window  
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S2 . Expression for the potential, Debye length and wave-vector 

mismatch 

Based on the previously reported theoretical model2, we determined the ratios between 

the non-linear susceptibilities 
 3 /

 2 . For a 1:1 electrolyte solution, the explicit definitions 

of the surface potential 0 , Debye length   and wave vector zk  are given in equation S1-

S3. 
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where Bk  is the Boltzmann constant, T  the temperature, 
ce  the elementary charge, 0  the 

surface charge density, AN  Avogadro’s number, c  the electrolyte concentration, 0  the 

vacuum permittivity, r  the relative permittivity of water, in  the refractive index, i  the 

frequency and i  the angle between the beam and the surface normal. 
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S3 . Uncertainty on the non-linear susceptibility ratio 

Surface charge densities, 0 , as reported for silica around neutral pH silica are

06.0 2/ mC < 0 < 02.0
2/ mC .3-7 Here, we compare the effect of the different values of 

0 on the shape of the SFG intensity and obtain for the 
 3 /

 2  values ranging from 

50.16 1V  to 25.22 1V . The resulting curves are shown in Figure S2 

 

Figure S2: Intensity curves resulting from equation 4, assuming different surface charge densities 0  

and adjusting the 
 3 /

 2  , compared to the experimental data for solutions with varying NaCl 

concentrations. 
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