

Supporting Information

Surface-Specific Vibrational Spectroscopy of the Water/Silica Interface: Screening and Interference

*Jan Schaefer, Grazia Gonella, Mischa Bonn and Ellen H. G. Backus**

**corresponding author: backus@mpip-mainz.mpg.de*

Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany

S1. Normalized SFG spectra of water at the silica surface

In the manuscript, we show the raw SFG spectra taken from the silica/water interface. For comparison, Figure S1 presents the same spectra shown in Figure 1, after normalization by the non-resonant signal from a chromium-free gold coated silica window. The double feature in the O-H stretch region reported previously¹ is reproduced.

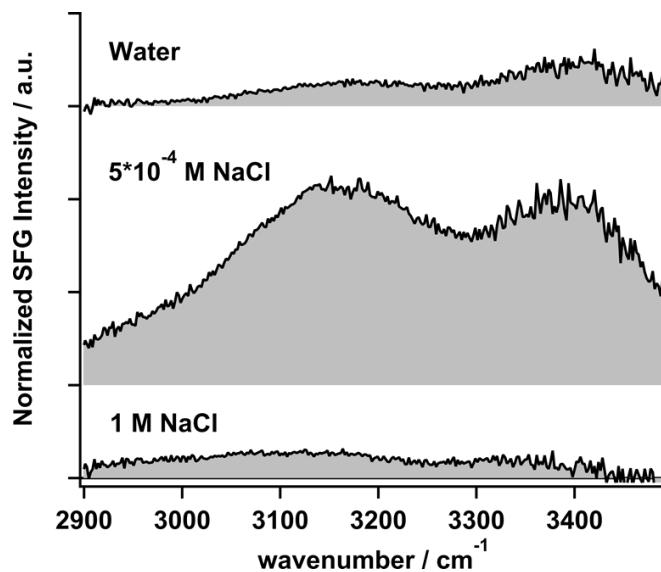


Figure S1: Normalized SFG spectra of the silica / water interface obtained from the raw data shown in Figure 1, normalized by the non-resonant signal from a chromium-free gold coated silica window

S2. Expression for the potential, Debye length and wave-vector mismatch

Based on the previously reported theoretical model², we determined the ratios between the non-linear susceptibilities $\chi^{(3)}/\chi^{(2)}$. For a 1:1 electrolyte solution, the explicit definitions of the surface potential ϕ_0 , Debye length κ and wave vector Δk_z are given in equation S1-S3.

$$\phi_0(c) = \frac{2k_B T}{e_c} \sinh^{-1} \left(\frac{\sigma_0}{\sqrt{8000 k_B T N_A c \epsilon_0 \epsilon_r}} \right) \quad (S1)$$

$$\kappa(c) = \sqrt{\frac{2000 e_c^2 N_A c}{\epsilon_0 \epsilon_r k_B T}} \quad (S2)$$

$$\Delta k_z = \frac{\sqrt{n_{SFG}^2 - \sin^2(\theta_{SFG})}}{\omega_{SFG}} + \frac{\sqrt{n_{VIS}^2 - \sin^2(\theta_{VIS})}}{\omega_{VIS}} + \frac{\sqrt{n_{IR}^2 - \sin^2(\theta_{IR})}}{\omega_{IR}} \quad (S3)$$

where k_B is the Boltzmann constant, T the temperature, e_c the elementary charge, σ_0 the surface charge density, N_A Avogadro's number, c the electrolyte concentration, ϵ_0 the vacuum permittivity, ϵ_r the relative permittivity of water, n_i the refractive index, ω_i the frequency and θ_i the angle between the beam and the surface normal.

S3. Uncertainty on the non-linear susceptibility ratio

Surface charge densities, σ_0 , as reported for silica around neutral pH silica are $-0.06 \text{ C/m}^2 < \sigma_0 < -0.02 \text{ C/m}^2$.³⁻⁷ Here, we compare the effect of the different values of σ_0 on the shape of the SFG intensity and obtain for the $\chi^{(3)}/\chi^{(2)}$ values ranging from -16.50 V^{-1} to -22.25 V^{-1} . The resulting curves are shown in Figure S2

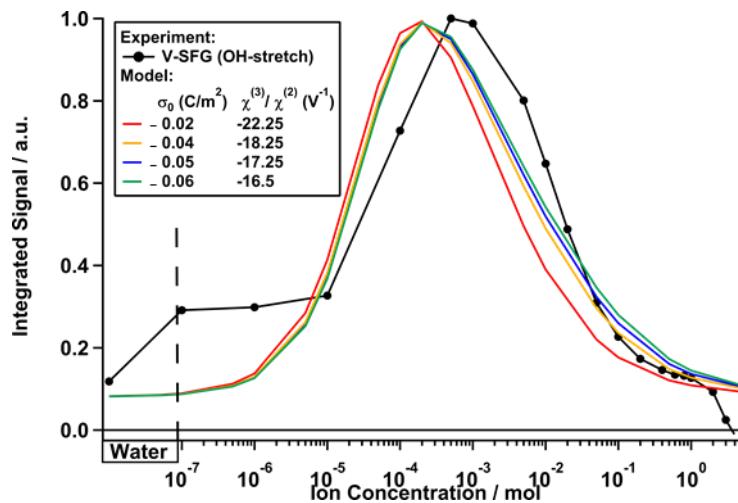


Figure S2: Intensity curves resulting from equation 4, assuming different surface charge densities σ_0 and adjusting the $\chi^{(3)}/\chi^{(2)}$, compared to the experimental data for solutions with varying NaCl concentrations.

References

S1. Ostroverkhov, V.; Waychunas, G. A.; Shen, Y. R., Vibrational Spectra of Water at Water/α-Quartz (0001) Interface. *Chem. Phys. Lett.* **2004**, 386, 144-148.

S2. Gonella, G.; Lütgebaucks, C.; de Beer, A. G.; Roke, S., Second Harmonic and Sum-Frequency Generation from Aqueous Interfaces Is Modulated by Interference. *J. Phys. Chem. C* **2016**, 120, 9165-9173.

S3. Karlsson, M.; Craven, C.; Dove, P. M.; Casey, W. H., Surface Charge Concentrations on Silica in Different 1.0 M Metal-Chloride Background Electrolytes and Implications for Dissolution Rates. *Aquat. Geochem.* **2001**, 7, 13-32.

S4. Brown, M. A.; Goel, A.; Abbas, Z., Effect of Electrolyte Concentration on the Stern Layer Thickness at a Charged Interface. *Angew. Chem. Int. Edit* **2016**, 55, 3790-3794.

S5. Darlington, A. M.; Gibbs-Davis, J. M., Bimodal or Trimodal? The Influence of Starting pH on Site Identity and Distribution at the Low Salt Aqueous/Silica Interface. *J. Phys. Chem. C* **2015**, 119, 16560-16567.

S6. Behrens, S. H.; Grier, D. G., The Charge of Glass and Silica Surfaces. *J. Chem. Phys.* **2001**, 115, 6716-6721.

S7. Wang, M.; Revil, A., Electrochemical Charge of Silica Surfaces at High Ionic Strength in Narrow Channels. *J. Colloid. Interface Sci.* **2010**, 343, 381-386.