Supporting Information

A Theoretical Study on Anion Sensing Mechanism of Multi-phosphonium Triarylboranes: Intramolecular Charge Transfer and Configurational Changes

Haamid R. Bhat[‡] and Prakash C. Jha*[†]

[‡] Computational Chemistry Laboratory, School of Chemical Sciences, Central University of Gujarat, Gandhinagar, India, 382030.

[†] Centre for Applied Chemistry, Central University of Gujarat, Gandhinagar, India, 382030.

*Corresponding author. Tel.: +91 886 682 3510

E-mail address: prakash.jha@cug.ac.in

angles (in deg	gree) for the Ful	ly Optimized Stru	ictures of I and Z a	at CAM-B3L Y P/6-3	G(a) level
parame	ter	1 ^a	1 ^b	2 ^a	2 ^b
B1 C	22	1.595	1.582	1.591	1.577
B1 C	10	1.574	1.571	1.591	1.574
B1 C	18	1.574	1.572	1.566	1.574
P26 C	27	1.782	1.764	1.784	1.771
P30 C	215			1.784	1.769
C2 B1	C10	119.1	119.1	118.1	122.7
C10 B1	C18	121.6	121.5	120.9	118.8
C2 B1	C18	119.1	119.3	120.9	118.4
C7 P26	H29	110.1	110.6	109.9	110.8
C7 P26	H28	112.3	112.6	112.6	112.0
C7 P26	H27	113.4	115.5	113.1	114.9
C4 C2	B1	120.5	121.2	119.6	121.6
C3 C2	B1	120.4	121.3	121.2	120.7

Table S1: Calculated Important Geometrical Parameters i.e, Bond lengths (in Å) and Bond angles (in degree) for the Fully Optimized Structures of **1** and **2** at CAM-B3LYP/6-31G(d) level

C10	B1	121.7	122.4	121.2	120.8
C10	B1	120.4	120.8	119.6	121.6
C18	B1	120.4	120.8	121.0	121.4
C18	B1	121.7	122.3	121.1	121.7
C4	C2			122.7	121.5
C3	C2			122.6	122.7
C4	C2	122.4	122.1		
C3	C2	122.6	122.1		
C11	C10			122.5	122.6
C12	C10			122.8	121.5
C12	C10	122.8	120.1		
C11	C10	122.7	121.5		
C20	C18			123.0	120.1
C19	C18			123.0	119.9
C20	C18	122.6	121.6		
C19	C18	122.8	120.1		
C7	P26	119.5	119.8	119.5	119.9
C7	P26	120.0	120.4	120.0	120.5
C15	P30	119.9	120.4		
C15	P30	119.6	119.8		
	C10 C10 C18 C18 C4 C3 C4 C3 C11 C12 C12 C12 C12 C12 C12 C19 C20 C19 C7 C7 C7 C15 C15	C10B1C10B1C18B1C18B1C4C2C3C2C4C2C3C2C11C10C12C10C12C10C11C10C12C10C11C10C12C10C11C10C12C10C11C10C11C10C12C10C11C10C12C110C13P26C15P30C15P30	C10B1121.7C10B1120.4C18B1121.7C4C2C3C2C4C2122.4C3C2122.6C11C10C12C10122.8C11C10122.7C20C18C19C18122.6C19C18122.8C7P26119.5C7P26120.0C15P30119.9C15P30119.6	C10B1121.7122.4C10B1120.4120.8C18B1121.7122.3C4C2C3C2C4C2122.4122.1C3C2122.6122.1C1C10C12C10122.8120.1C11C10122.7121.5C20C18C19C18122.6121.6C19C18122.8120.1C7P26119.5119.8C7P26120.0120.4C15P30119.9120.4	C10 B1 121.7 122.4 121.2 C10 B1 120.4 120.8 119.6 C18 B1 120.4 120.8 121.0 C18 B1 121.7 122.3 121.1 C4 C2 122.7 C3 C2 122.6 C4 C2 122.4 122.1 C3 C2 122.6 122.1 C3 C2 122.6 122.1 C11 C10 122.5 122.1 C12 C10 122.8 120.1 C11 C10 122.7 121.5 123.0 C12 C10 122.7 121.5 123.0 C12 C10 122.7 121.5 123.0 C19 C18 122.6 121.6 123.0 C19 C18 122.8 120.1 12

Table S2: Calculated Important Geometrical Parameters i.e, Bond lengths (in Å) and Bond angles (in degree) for the Fully Optimized Structures of **3** at CAM-B3LYP/6-31G(d) level; the Corresponding X-ray data¹(in parentheses)

concepting in ray and	a (in parentileses)	
parameter	3 ^a	3 ^b
B1 C2	1.585 (1.584)	1.605
B1 C10	1.585	1.560
B1 C18	1.585	1.560
P26 C7	1.787 (1.792)	1.780
P30 C15	1.787	1.782
P58 C23	1.787	1.782

C2	B1	C10	120.0 (120.0)	118.8
C10	B1	C18	119.9	122.3
C2	B1	C18	119.9	118.9
C7	P26	H29	110.0 (111.0)	110.1
C7	P26	H28	112.0	112.4
C7	P26	H27	113.0	113.6
C5	C7	P26	119.5	119.6
C6	C7	P26	119.9	120.1
C13	C15	P30	120.0	120.2
C14	C15	P30	119.4	119.6
C22	C23	P58	119.9	120.2
C21	C23	P58	119.5	119.6
C4	C2	B1	120.4	120.5
C3	C2	B1	120.4	120.5
C11	C10	B1	120.4	123.3
C12	C10	B1	120.4	119.5
C19	C18	B1	120.4	119.5
C20	C18	B1	120.4	123.3
C38	C4	C2	122.9	122.1
C34	C3	C2	122.9	122.2
C42	C11	C10	122.8	122.3
C46	C12	C10	122.9	121.0
C50	C19	C18	122.9	121.0
C54	C20	C18	122.8	122.3

Table S3: Calculated Important Geometrical Parameters i.e, Bond lengths (in Å) and Bond angles (in degree) for the Fully Optimized Structures of 1F and 2F at CAM-B3LYP/6-31G(d) Level

Dever					
para	meter	1F ^a	1F ^b	2F ^a	2F ^b
B1	C2	1.678	1.681	1.660	1.657
B1	C10	1.664	1.671	1.672	1.665

B1 C18	3	1.665	1.667	1.674	1.676
P26 C7	,	1.771	1.764		
P26 C1:	5			1.772	1.774
B1 F62	,	1.460	1.461	1.454	1.454
P38 C23	3			1.773	1.775
C2 B1 C	210	113.8	114.9	114.6	115.6
C10 B1 0	C18	115.3	117.4	113.9	114.9
C2 B1 C	218	114.1	115.6	114.7	112.8
C7 P26 H	H29	110.3	110.8		
C7 P26 H	H28	112.8	113.9		
C7 P26 H	H27	114.6	115.5		
C15 P26	H27			111.4	111.2
C15 P26	H28			114.8	114.6
C15 P26	H29			111.3	111.3
C23 P38	H31			114.5	114.3
C23 P38	H32			112.6	112.4
C23 P38	H33			110.4	110.4
C4 C2 I	B1	125.6	124.9	126.2	125.8
C3 C2 I	B1	117.5	118.3	117.8	118.1
C11 C10	B1	126.3	127.0	117.2	116.9
C12 C10	B1	117.8	118.2	125.8	125.9
C19 C18	B1	126.0	126.4	117.7	118.3
C20 C18	B1	118.1	119.7	125.3	126.8
C34 C4	C2	123.5	124.3		
C30 C3	C2	123.2	124.0		
C42 C4	C2			123.5	123.6
C46 C3	C2			123.1	123.4
C34 C12	C10			123.6	123.7
C42 C12	C10	122.8	123.4		
C38 C11	C10	123.4	124.1	123.2	123.1
C54 C19	C18			123.2	123.7

C58	C20	C18			123.8	124.6
C50	C20	C18	123.0	123.8		
C46	C19	C18	123.5	124.2		
C5	C7	P26	119.8	120.3		
C6	C7	P26	120.6	121.1		
C13	C15	P26			120.2	120.1
C14	C15	P26			120.2	120.2
C21	C23	P30			120.6	120.5
C22	C23	P30			119.8	119.7
C2	B1	F62	102.7	103.3	104.8	106.2
C10	B1	F62	104.5	105.1	103.5	103.7
C18	B1	F62	104.2	104.9	103.2	101.5

Table S4: Calculated Important Geometrical Parameters i.e, Bond lengths (in Å) and Bond angles (in degree) for the Fully Optimized Structures of **3F** at CAM-B3LYP/6-31G(d) level

parameter	3F ^a	3F ^b
B1 C2	1.669	1.670
B1 C10	1.669	1.663
B1 C18	1.669	1.666
P26 C7	1.774	1.776
P30 C15	1.775	1.776
P58 C23	1.775	1.776
B1 F62	1.449	1.448
C2 B1 C10	114.6	115.5
C10 B1 C18	114.5	115.4
C2 B1 C18	114.4	112.7
C7 P26 H29	111.1	111.0
C7 P26 H28	111.6	114.3
C7 P26 H27	114.5	111.6

C5	C7	P26	120.1	120.2
C6	C7	P26	120.3	120.1
C13	C15	P30	120.3	120.2
C14	C15	P30	120.0	120.0
C22	C23	P58	120.2	120.3
C21	C23	P58	120.1	119.9
C4	C2	B1	125.6	127.2
C3	C2	B1	117.3	117.8
C11	C10	B1	125.6	125.7
C12	C10	B1	117.3	117.0
C19	C18	B1	125.5	125.1
C20	C18	B1	117.3	117.6
C38	C4	C2	123.7	124.7
C34	C3	C2	123.4	123.7
C42	C11	C10	123.7	123.7
C46	C12	C10	123.4	123.3
C50	C19	C18	123.7	123.7
C54	C20	C18	123.4	123.7
C2	B1	F62	103.7	102.0
C10	B1	F62	103.7	104.0
C18	B1	F62	103.8	105.1

Table S5: Calculated Important Geometrical Parameters i.e, Bond lengths (in Å) and Bond
angles (in degree) for the Fully Optimized Structures of 1CN and 2CN at CAM-B3LYP/6-
31G(d) level

510(4)10					
para	imeter	1CN ^a	1CN ^b	2CN ^a	2CN ^b
B1	C2	1.681	1.670	1.669	1.665
B1	C10	1.672	1.658	1.677	1.671
B1	C18	1.673	1.654	1.679	1.678
P26	C7	1.773	1.717		

P26	6 C1	5			1.777	1.776
B1	C62	2	1.625	1.673	1.622	1.622
P30) C23	3			1.775	1.774
C2	B1 C	C10	114.5	118.7	114.9	115.9
C10	B1 (C18	115.1	115.5	114.3	115.2
C2	B1 C	C18	114.3	106.4	114.7	112.7
C7 I	P26 I	H29	111.1	110.2		
C7 I	P26 I	H28	111.8	110.0		
C7 I	P26 I	H27	114.5	113.7		
C15	P26	H27			111.7	111.8
C15	P26	H28			114.4	114.3
C15	P26	H29			110.9	110.8
C23	P30	H31			114.3	114.3
C23	P30	H32			112.3	111.7
C23	P30	H33			110.6	110.8
C4	C2 1	B1	123.8	126.6	124.4	124.0
C3	C2 1	B1	119.8	117.5	119.9	120.1
C11	C10	B1	124.5	124.1	119.5	118.9
C12	C10	B1	119.8	119.9	124.0	124.3
C19	C18	B1	124.1	122.7	119.8	121.2
C20	C18	B1	120.3	119.5	123.6	124.8
C42	C4	C2			124.1	124.1
C46	C3	C2			123.9	124.3
C34	C4	C2	124.1	123.6		
C30	C3	C2	123.9	123.2		
C42	C12	C10	123.7	123.7		
C38	C11	C10	124.0	124.1	124.0	123.9
C34	C12	C10			124.2	124.3
C54	C19	C18			124.1	124.5
C58	C20	C18			124.4	124.9
C50	C20	C18	123.9	123.6		

C46	C19	C18	124.1	123.9		
C5	C7	P26	120.3	121.7		
C6	C7	P26	120.5	121.3		
C13	C15	P26			120.1	120.0
C14	C15	P26			120.5	120.5
C21	C23	P30			120.6	121.5
C22	C23	P30			120.0	120.8
C2	B1	C62	102.8	105.1	104.3	106.2
C10	B1	C62	103.9	105.9	103.1	102.9
C18	B1	C62	103.9	103.6	103.3	101.7

Table S6: Calculated Important Geometrical Parameters i.e, Bond lengths (in Å) and Bond angles (in degree) for the Fully Optimized Structures of **3**CN at CAM-B3LYP/6-31G(d) level

parameter	3CN ^a	3CN ^b
B1 C2	1.675	1.672
B1 C10	1.675	1.654
B1 C18	1.674	1.677
P26 C7	1.776	1.777
P30 C15	1.776	1.729
P58 C23	1.776	1.777
B1 C62	1.619	1.621
C2 B1 C10	114.5	111.4
C10 B1 C18	114.7	116.5
C2 B1 C18	114.5	115.3
C7 P26 H29	111.6	111.9
C7 P26 H28	111.1	110.7
C7 P26 H27	114.2	114.2
C5 C7 P26	120.3	120.5
C6 C7 P26	120.3	120.1

C13 C15	P30	120.0	124.0
C14 C15	P30	120.6	124.1
C22 C23	P58	120.2	120.3
C21 C23	P58	120.3	120.2
C4 C2	B1	123.9	123.8
C3 C2	B1	119.5	119.5
C11 C10	B1	123.8	126.1
C12 C10	B1	119.5	122.3
C19 C18	B1	123.8	124.1
C20 C18	B1	119.5	119.1
C38 C4	C2	124.3	124.4
C34 C3	C2	124.3	124.2
C42 C11	C10	124.3	124.3
C46 C12	C10	124.2	123.7
C50 C19	C18	124.3	124.4
C54 C20	C18	124.2	124.0
C2 B1	C62	103.5	106.1
C10 B1	C62	103.6	103.1
C18 B1	C62	103.6	102.5

Table S7: The NPA Charge Distribution on Some Crucial Atoms of 1-3,	1CN-3CN and 1F-
3F in S_0 Calculated at CAM-B3LYP/6-31G(d) Level of Theory.	

Molecule	NPA charge distribution (Atom involved)					
1	0.933 (B1)	-0.336 (C2)	-0.426 (C10)	-0.426 (C18)	0.861 (P26)	
1CN	0.274	-0.176	-0.252	-0.255	0.865	0.169
	(B1)	(C2)	(C10)	(C18)	(P26)	(C62)
1F	0.757	-0.216	-0.298	-0.300	0.866	-0.556
	(B1)	(C2)	(C10)	(C18)	(P26)	(F62)

2	0.941 (B1)	-0.350 (C2)	-0.350 (C10)	-0.445 (C18)	0.861 (P26)	
2CN	0.272	-0.260	-0.183	-0.186	0.865	0.162
	(B1)	(C2)	(C10)	(C18)	(P26)	(C62)
2 F	0.756	-0.308	-0.225	-0.227	0.865	-0.552
	(B1)	(C2)	(C10)	(C18)	(P26)	(F62)
3	0.965 (B1)	-0.371 (C2)	-0.372 (C10)	-0.371 (C18)	0.859 (P26)	
3CN	0.271	-0.193	-0.193	-0.193	0.864	0.155
	(B1)	(C2)	(C10)	(C18)	(P26)	(C62)
3F	0.756	-0.236	-0.236	-0.236	0.864	-0.548
	(B1)	(C2)	(C10)	(C18)	(P26)	(F62)

Table S8: Calculated free energy changes (ΔG) for various Addition Products using CAM-B3LYP/6-31G(d) Level of Theory with Basis Set Superposition Error (BSSE) Corrections.

Molecule	ΔG (Kcal/mol)
1CN	-9.56
1 F	-59.99
1Br	21.73
1Cl	28.22
1CH ₃ COO	4.08
1NO ₃	18.96
1HSO ₄	26.89
2CN	-17.43
2 F	-69.52
2Br	12.90
2 Cl	19.60
2CH ₃ COO	3.01
2NO ₃	10.93
2HSO ₄	19.61
3CN	-23.19

3 F	-75.14
3Br	8.09
3Cl	13.50
3CH ₃ COO	10.55
3NO ₃	5.63
3HSO ₄	15.1

Table S9: Hybrids of **1-3**, **1CN-3CN** and **1F-3F** in Ground State Calculated by Employing the CAM-B3LYP/6-31G(d) Level of Theory.

Molecule	Lewis-type NBOs	Hybrid ^a	AO (%) ^b
	$\sigma\left(B1-C2\right)$	$sp^{2.11}d^0$	s(32.12%) p(67.78%) d(0.10%)
1	$\sigma\left(B1-C10\right)$	sp ^{1.95} d ⁰	s(33.91%) p(66.00%) d(0.09%)
	$\sigma\left(B1-C18\right)$	$sp^{1.95}d^{0}$	s(33.92%) p(65.99%) d(0.09%)
	σ (B1 – C2)	sp ^{2.95} d ⁰	s(25.26%) p(74.64%) d(0.10%)
1 <i>C</i> N	$\sigma\left(B1-C10\right)$	$sp^{2.78}d^{0}$	s(26.46%) p(73.45%) d(0.09%)
ICN	$\sigma\left(B1-C18\right)$	$sp^{2.77}d^{0}$	s(26.51%) p(73.40%) d(0.09%)
	$\sigma\left(B1-C62\right)$	sp ^{3.58} d ^{0.01}	s(21.79%) p(78.09%) d(0.12%)
	$\sigma \left(B1-C2 ight)$	$sp^{2.67}d^{0}$	s(27.18%) p(72.70%) d(0.12%)
16	$\sigma\left(B1-C10\right)$	$sp^{2.51}d^{0}$	s(28.46%) p(71.43%) d(0.11%)
IF	$\sigma\left(B1-C18\right)$	$sp^{2.49}d^{0}$	s(28.62%) p(71.27%) d(0.11%)
	$\sigma\left(B1-F62\right)$	sp ^{3.43} d ^{0.01}	s(21.80%) p(78.10%) d(0.10%)
	$\sigma \left(B1-C2 ight)$	sp ^{2.06} d ⁰	s(32.67%) p(67.23%) d(0.10%)
2	$\sigma\left(B1-C10\right)$	$sp^{2.06}d^{0}$	s(32.67%) p(67.23%) d(0.10%)
	$\sigma\left(B1-C18\right)$	$sp^{1.89}d^{0}$	s(34.61%) p(65.31%) d(0.09%)

	$\sigma (B1 - C2)$	$sp^{2.72}d^{0}$	s(26.83%) p(73.08%) d(0.10%)
2CN	$\sigma\left(B1-C10\right)$	$sp^{2.90}d^{0}$	s(25.61%) p(74.30%) d(0.09%)
ZUN	$\sigma\left(B1-C18\right)$	$sp^{2.89}d^{0}$	s(25.65%) p(74.26%) d(0.09%)
	$\sigma\left(B1-C62\right)$	sp ^{3.55} d ^{0.01}	s(21.94%) p(77.95%) d(0.12%)
	σ (B1 – C2)	$sp^{2.47}d^{0}$	s(28.80%) p(71.10%) d(0.10%)
ЭF	$\sigma\left(B1-C10\right)$	$sp^{2.63}d^{0}$	s(27.55%) p(72.34%) d(0.11%)
21	$\sigma\left(B1-C18\right)$	$sp^{2.61}d^{0}$	s(27.64%) p(72.24%) d(0.11%)
	$\sigma\left(B1-F62\right)$	sp ^{2.95} d ⁰	s(27.05%) p(72.86%) d(0.10%)
	σ (B1 – C2)	$sp^{2.00}d^{0}$	s(33.32%) p(66.59%) d(0.10%)
3	$\sigma\left(B1-C10\right)$	$sp^{2.00}d^{0}$	s(33.33%) p(66.58%) d(0.10%)
3 σ(σ(σ (B1 – C18)	$sp^{2.00}d^{0}$	s(33.31%) p(66.60%) d(0.10%)
	σ (B1 – C2)	$sp^{2.85}d^{0}$	s(25.96%) p(73.95%) d(0.09%)
3CN	$\sigma\left(B1-C10\right)$	$sp^{2.84}d^{0}$	s(25.99%) p(73.92%) d(0.09%)
JUN	$\sigma\left(B1-C18\right)$	$sp^{2.84}d^{0}$	s(25.99%) p(73.92%) d(0.09%)
	$\sigma\left(B1-C62\right)$	$sp^{3.52}d^{0.01}$	s(22.09%) p(77.80%) d(0.11%)
	$\sigma\left(B1-C2\right)$	$sp^{2.58}d^{0}$	s(27.90%) p(71.99%) d(0.11%)
2 E	$\sigma\left(B1-C10\right)$	$sp^{2.58}d^{0}$	s(27.92%) p(71.97%) d(0.11%)
ЭГ	$\sigma\left(B1-C18\right)$	sp ^{2.58} d ⁰	s(27.91%) p(71.98%) d(0.11%)
	$\sigma\left(B1-F62\right)$	$sp^{2.87}d^{0}$	s(27.05%) p(72.86%) d(0.10%)

^a Hybrid on A atom in the A-B Bond or otherwise as indicated. ^b Percentage Contribution of Atomic Orbitals in NBO Hybrid.

Table S10: Calculated Electronic Excitation Energies and Corresponding Oscillator Strengths of Singlet Excited States of 1-3, 1F-3F and 1CN-3CN at DFT/CAM-B3LYP/6-31G(d) Level of Theory.

molecule	electronic transition ^a	energy (nm/eV)	f^{b}	contrib. ^c	CId
	$S_0 \rightarrow S_1$	377(3,85)	0 1745	HOMO→LUMO	0.658
	$S_0 \rightarrow S_2$	302(4.10)	0.1745	HOMO-1 \rightarrow LUMO	0.030
	$S_0 \rightarrow S_3$	284(4.10)	0.0110	HOMO-1 →LUMO	0.638
	$S_0 \rightarrow S_4$	279 (4.43)	0.0140	HOMO-3→LUMO	0.629
	$S_0 \rightarrow S_5$	264 (4 68)	0.0018	HOMO-4→LUMO	0.640
	$S_0 \rightarrow S_6$	255 (4 84)	0.0071	HOMO-5→LUMO	0.637
	$S_0 \rightarrow S_7$	232(535)	0.0196	HOMO→LUMO+1	0.596
1	$S_0 \rightarrow S_8$	225 (5.51)	0.0033	HOMO-1→LUMO+1	0.334
	$S_0 \rightarrow S_0$	224 (5.52)	0.0009	HOMO-2→LUMO+1	0.323
	$S_0 \rightarrow S_{10}$	220 (5.63)	0.0268	HOMO-7→LUMO	0.399
	$S_0 \rightarrow S_{11}$	216 (5.72)	0.0211	HOMO-6→LUMO	0.571
	$S_0 \rightarrow S_{10}$	213 (5.81)	0.0077	HOMO-1→LUMO+1	0.434
	$S_0 \rightarrow S_{12}$	211 (5.87)	0.0086	HOMO-4→LUMO+1	0.534
	$S_0 \rightarrow S_{13}$	205(6.05)	0.0045	HOMO-5→LUMO+1	0.413
	$S_0 \rightarrow S_{14}$ $S_0 \rightarrow S_{15}$	201 (6.15)	0.0124	HOMO-2→LUMO+1	0.504
	$S_0 \rightarrow S_1$	0.57 (1.00)	0.0021		0.500
	$S_0 \rightarrow S_2$	257 (4.80)	0.0021	HOMO→LUMO	0.592
	$S_0 \rightarrow S_3$	246 (5.02)	0.0082	HOMO-5→LUMO	0.601
	0 5	245 (5.05)	0.0126	HOMO-1→LUMO	0.485
	$S_0 \rightarrow S_A$	005 (5.07)	0.0001	HOMO→LUMO	0.104
	$S_0 \rightarrow S_r$	235 (5.27)	0.0081	HOMO→LUMO+7	0.292
	$S_0 \rightarrow S_c$	234 (5.29)	0.0029	HOMO→LUMO+6	0.346
	$S \rightarrow S$	230 (5.37)	0.0082	HOMO-1→LUMO	0.458
1 F	$S_0 > S_7$	217 (5.70)	0.0061	HOMO-2→LUMO	0.517
	3 ₀ →3 ₈	216 (5.75)	0.0014	HOMO-3→LUMO	0.307
	$s_0 \rightarrow s_9$	215 (5.78)	0.0041	HOMO-3→LUMO	0.418
	$S_0 \rightarrow S_{10}$	214 (5.80)	0.0016	HOMO→LUMO+I	0.4/4
	$S_0 \rightarrow S_{11}$	211 (5.87)	0.0050	HOMO-6→LUMO	0.465
	$S_0 \rightarrow S_{12}$	209 (5.91)	0.0035	HOMO \rightarrow LUMO+4	0.246
	$S_0 \rightarrow S_{13}$	204 (6.06)	0.0042	HUMU-/→LUMU	0.301
	$S_0 \rightarrow S_{14}$	202 (6.11)	0.0010	HOMO- $/\rightarrow$ LUMO	0.452
	$S_0 \rightarrow S_{15}$	200 (6.18)	0.0021	HUMU-4→LUMU+I	0.236

	$S_{a} \rightarrow S_{a}$				
	$S_0 \rightarrow S_1$	251 (4.93)	0.0040	HOMO-5→LUMO	0.514
	$S_0 S_2$	246 (5.03)	0.0019	HOMO-1→LUMO	0.523
	$3_0 \rightarrow 3_3$	240 (5.15)	0.0046	HOMO→LUMO	0.515
	$S_0 \rightarrow S_4$	238 (5.20)	0.0143	HOMO-4→LUMO	0.550
				HOMO→LUMO	0.229
	$S_0 \rightarrow S_5$	236 (5.24)	0.0013	HOMO→LUMO+7	0.267
	$S_0 \rightarrow S_6$	235 (5.26)	0.0029	HOMO→LUMO	0.357
	$S_0 \rightarrow S_7$	219 (5.65)	0.0014	HOMO-2→LUMO	0.591
CN	$S_0 \rightarrow S_8$	216 (5.73)	0.0023	HOMO→LUMO+3	0.376
	$S_0 \rightarrow S_9$	214 (5.78)	0.0021	HOMO-3→LUMO	0.597
	$S_0 \rightarrow S_{10}$	211 (5.84)	0.0013	HOMO-1→LUMO+3	0.314
	$S_0 \rightarrow S_{11}$	208 (5.94)	0.0005	HOMO-1→LUMO+1	0.511
	$S_0 \rightarrow S_{12}$	201 (6.14)	0.0021	HOMO-4→LUMO+1	0.379
	$S_0 \rightarrow S_{12}$	200 (6.18)	0.0022	HOMO-7→LUMO	0.441
	$S_0 \rightarrow S_1$	198 (6.23)	0.0013	HOMO→LUMO+1	0.419
	$S_0 \rightarrow S_{14}$	197 (6.27)	0.0034	HOMO-5→LUMO	0.298
	$\frac{S_0}{S_{15}}$				
	$S_0 \rightarrow S_1$	324 (3.82)	0.1955	HOMO→LUMO	0.664
	$S_0 \rightarrow S_2$	300 (4.13)	0.0187	HOMO-1→LUMO	0.622
	$S_0 \rightarrow S_3$	287 (4.30)	0.0200	HOMO-3→LUMO	0.464
	$S_0 \rightarrow S_4$	272 (4.55)	0.0018	HOMO-2→LUMO	0.553
	$S_0 \rightarrow S_5$	270 (4.58)	0.0071	HOMO-4→LUMO	0.522
	$S_0 \rightarrow S_6$	253 (4.88)	0.0195	HOMO-5→LUMO	0.667
	$S_0 \rightarrow S_7$	233 (5.31)	0.0083	HOMO→LUMO+1	0.603
2	$S_0 \rightarrow S_8$	224 (5.53)	0.0026	HOMO-6→LUMO	0.374
	$S_0 \rightarrow S_9$	223 (5.55)	0.0077	HOMO→LUMO+7	0.379
	$S_0 \rightarrow S_{10}$	221 (5.60)	0.0104	HOMO-4→LUMO+1	0.370
	$S_0 \rightarrow S_{11}$	220 (5.62)	0.0014	HOMO-2→LUMO+1	0.437
	$S_0 \rightarrow S_{12}$	217 (5.70)	0.0205	HOMO-7→LUMO	0.414
	$S_0 \rightarrow S_{12}$	215 (5.76)	0.0053	HOMO-1→LUMO+1	0.624
	$S_0 \rightarrow S_1$	213 (5.81)	0.0116	HOMO→LUMO+2	0.569
	$S_0 \rightarrow S_{17}$	211 (5.86)	0.0051	HOMO-4→LUMO+1	0.366
	$\frac{S_0 \rightarrow S_{15}}{S_1 \rightarrow S_1}$				
	$S_0 \rightarrow S_1$	251 (4.92)	0.0066	HOMO→LUMO	0.525
	$3_0 \rightarrow 3_2$	249 (4.97)	0.0012	HOMO→LUMO+1	0.329
	$S_0 \rightarrow S_3$	246 (5.02)	0.0035	HOMO-5→LUMO	0.396
2F	$S_0 \rightarrow S_4$	244 (5.07)	0.0068	HOMO→LUMO+1	0.392
	$S_0 \rightarrow S_5$	240 (5.14)	0.0149	HOMO-2→LUMO+1	0.552
	- -		0.007-	HOMO-1→LUMO+1	0.142
	$S_0 \rightarrow S_6$	236 (5.25)	0.0025	HOMO-2→LUMO	0.504

1C1

2F

	$S_0 \rightarrow S_7$	233 (5.30)	0.0049	HOMO→LUMO+9	0.480
	$S_0 \rightarrow S_8$	221 (5.60)	0.0018	HOMO-3→LUMO	0.404
	$S_0 \rightarrow S_9$	218 (5.67)	0.0031	HOMO-3→LUMO+1	0.393
	$S_0 \rightarrow S_{10}$	216 (5.72)	0.0015	HOMO-1→LUMO	0.551
	$S_0 \rightarrow S_{11}$	213 (5.80)	0.0005	HOMO-1→LUMO+1	0.647
	$S_0 \rightarrow S_{12}$	212 (5.83)	0.0007	HOMO→LUMO+6	0.475
	$S_0 \rightarrow S_{12}$	207 (5.98)	0.0022	HOMO→LUMO+3	0.438
	$S_0 \times S_{13}$	205 (6.02)	0.0030	HOMO→LUMO+2	0.435
	$3_0 \rightarrow 3_{14}$	201 (6.16)	0.0014	HOMO-7→LUMO	0.335
	$3_0 \rightarrow 3_{15}$				
	$S_0 \rightarrow S_1$	250 (4.94)	0.0046	HOMO-4→LUMO	0.405
	$S_0 \rightarrow S_2$	251 (4 95)	0.0034	HOMO-5→LUMO	0 329
	$S_0 \rightarrow S_3$	245 (5.04)	0.0017	HOMO→LUMO	0.524
	$S_0 \rightarrow S_4$	239 (5.18)	0.0159	HOMO-2 \rightarrow LUMO+1	0.431
		259 (5.10)	0.0109	HOMO- $3 \rightarrow LUMO$	0.392
	$S_0 \rightarrow S_5$	236 (5 24)	0.0019	HOMO \rightarrow LUMO+1	0.408
	$S_0 \rightarrow S_6$	235 (5.21)	0.0013	HOMO→LUMO+7	0.403
	$S_0 \rightarrow S_7$	233 (5.23)	0.0048	HOMO→LUMO+1	0.384
2CN	$S_0 \rightarrow S_0$	220 (5.62)	0.0010	HOMO-1→LUMO	0.627
	$S_0 \rightarrow S_0$	217 (5.69)	0.0010	HOMO-3 \rightarrow LUMO+1	0.337
	S ₀ →S ₁₀	217 (5.05)	0.0046	HOMO \rightarrow LUMO+6	0.337
	$S_0 \rightarrow S_{10}$	212 (5.82)	0.0030	HOMO-1 \rightarrow LUMO+1	0.544
	S_0 / S_{11}	209 (5.90)	0.0030	HOMO-2 \rightarrow LUMO+1	0.316
	$3_0 \rightarrow 3_{12}$	205 (6.03)	0.0060	HOMO \rightarrow LUMO+3	0.447
	$S_0 \rightarrow S_{13}$	203 (0.05)	0.0000	HOMO- $2 \rightarrow UUMO+2$	0.117
	$S_0 \rightarrow S_{14}$	201 (0.10)	0.0025	HOMO 2° / LOMO $^{\circ}2$	0.383
	$S_0 \rightarrow S_{15}$	200 (0.17)	0.0050		0.505
	$S_0 \rightarrow S_1$	302 (4.10)	0.1433	HOMO-4→LUMO	0.485
	$S_0 \rightarrow S_2$	301 (4.11)	0.0015	HOMO-3→LUMO	0.529
	$S_0 \rightarrow S_3$	283 (4.37)	0.0082	HOMO-1→LUMO	0.467
	$S_0 \rightarrow S_4$	282 (4.40)	0.0080	HOMO-2→LUMO	0.463
	$S_0 \rightarrow S_{r}$	281(4.41)	0.0010	HOMO-4→LUMO	0.453
	$S_0 \rightarrow S_1$	255 (4.84)	0.0000	HOMO-5→LUMO	0.682
3	5 ₀ ,5 ₆	227 (5.46)	0.0076	HOMO-2→LUMO+1	0.425
	$S_0 \rightarrow S_7$	226 (5.47)	0.0055	HOMO→LUMO+2	0.343
	ა ₀ →ა ₈	225 (5.49)	0.0026	HOMO-2→LUMO+2	0.317
	$S_0 \rightarrow S_9$	223 (5.55)	0.0031	HOMO-6→LUMO	0.394
		· · · ·	0.0007		0 308
	$S_0 \rightarrow S_{10}$	222 (5.57)	0.0027	ΠUMU-/→LUMU	0.590
	$S_0 \rightarrow S_{10}$ $S_0 \rightarrow S_{11}$	222 (5.57) 213 (5.81)	0.0027 0.0006	HOMO-7→LUMO HOMO-3→LUMO+1	0.398

$S_0 \rightarrow S_{13}$	210 (5.89)	0.0087	HOMO-6→LUMO	0.415
$S_0 \rightarrow S_{14}$	209 (5.93)	0.0015	HOMO-3→LUMO+2	0.432
$S_0 \rightarrow S_{15}$				

	$S_0 \rightarrow S_1$	248 (4.99)	0.0051	HOMO-2→LUMO	0.364
	$S_0 \rightarrow S_2$	248 (5.00)	0.0041	HOMO-2→LUMO+1	0.353
	$S_0 \rightarrow S_3$	247 (5.01)	0.0058	HOMO-1→LUMO+2	0.364
	$S_0 \rightarrow S_4$	240 (5.18)	0.0157	HOMO→LUMO+1	0.360
		()		HOMO-1→LUMO+1	0.349
	$S_0 \rightarrow S_5$	239 (5.19)	0.0055	HOMO→LUMO	0.366
	$S_0 \rightarrow S_6$	233 (5.31)	0.0020	HOMO→LUMO	0.373
	$S_0 \rightarrow S_7$	230 (5.39)	0.0016	HOMO-1→LUMO+2	0.438
3F	$S_0 \rightarrow S_8$	229 (5.40)	0.0002	HOMO→LUMO+2	0.463
	$S_0 \rightarrow S_9$	226 (5.46)	0.0037	HOMO→LUMO+1	0.417
	$S_0 \rightarrow S_{10}$	203 (6.12)	0.0042	HOMO-5→LUMO+2	0.395
	$S_0 \rightarrow S_{11}$	202 (6.13)	0.0027	HOMO-5→LUMO	0.501
	$S_0 \rightarrow S_{12}$	201 (6.14)	0.0008	HOMO-5→LUMO+1	0.477
	$S_0 \rightarrow S_{12}$	198 (6.28)	0.0034	HOMO→LUMO+4	0.292
	$S_0 \rightarrow S_{13}$	197 (6.29)	0.0028	HOMO→LUMO+4	0.349
	$S_0 \rightarrow S_{14}$	196 (6.30)	0.0017	HOMO-1→LUMO+3	0.299
	<u> </u>				
	$S_0 \rightarrow S_1$	251 (4.94)	0.0038	HOMO→LUMO+1	0.372
	$S_0 \rightarrow S_2$	250 (4.95)	0.0046	HOMO-2→LUMO	0.274
	$S_0 \rightarrow S_3$	249 (4.97)	0.0043	HOMO-5→LUMO	0.325
	$S_0 \rightarrow S_4$	238 (5.21)	0.0160	HOMO-3→LUMO+1	0.334
				HOMO-5→LUMO+1	0.116
	$S_0 \rightarrow S_5$	237(5.22)	0.0060	HOMO-3→LUMO+1	0.350
	$S_0 \rightarrow S_6$	228 (5.43)	0.0092	HOMO-1→LUMO	0.326
3CN	$S_0 \rightarrow S_7$	221 (5.60)	0.0024	HOMO-1→LUMO+1	0.311
• • • •	$S_0 \rightarrow S_8$	217 (5.71)	0.0017	HOMO-2→LUMO+2	0.290
	$S_0 \rightarrow S_0$	216 (5.72)	0.0016	HOMO-1→LUMO+2	0.325
	$S_0 \rightarrow S_{10}$	204 (6.07)	0.0013	HOMO-3→LUMO+1	0.452
	$S_0 \rightarrow S_{10}$	203 (6.08)	0.0011	HOMO-3→LUMO	0.454
	$S_0 \rightarrow S_{11}$	201 (6.15)	0.0026	HOMO-3→LUMO+2	0.433
	$S_0 - S_{12}$	200 (6.18)	0.0009	HOMO→LUMO	0.332
	$s_0 \rightarrow s_{13}$	199 (6.22)	0.0027	HOMO→LUMO+1	0.337
	$S_0 \rightarrow S_{14}$	198 (6.26)	0.0024	HOMO-2→LUMO+3	0.313

^aOnly the Selected Low-lying Excited States are Presented. ^bOscillator Strength. ^cOnly the Main Configurations are Presented. ^d The CI Coefficients are in Absolute Values.

Table S11: Calculated Electronic Excitation Energies and Corresponding Oscillator Strengths of the Low-Lying Singlet Excited States of **1-2**, **1CN-2CN** and **1F-2F** by Employing Different Functionals.

functional	molecule	electronic transition ^a	energy (nm/eV)	f^{b}	contrib. ^c	CId
		$S_0 \rightarrow S_1$	328 (3.77)	0.1572	HOMO→LUMO	0.665
		$S_0 \rightarrow S_2$	308 (4.01)	0.0197	HOMO-1→LUMO	0.591
MOGON	1	$S_0 \rightarrow S_3$	288 (4.29)	0.0059	HOMO-2→LUMO	0.621
M06-2X	1	$S_0 \rightarrow S_4$	281 (4.41)	0.0098	HOMO-3→LUMO	0.649
		$S_0 \rightarrow S_5$	263 (4.69)	0.0638	HOMO-4→LUMO	0.647
		$S_0 \rightarrow S_6$	260 (4.76)	0.0309	HOMO-5→LUMO	0.623
	45	$S_0 \rightarrow S_1$	266 (4.65)	0.0069	HOMO→LUMO	0.589
		$S_0 \rightarrow S_2$	247 (5.00)	0.0017	HOMO-1→LUMO	0.566
MOC ON		$S_0 \rightarrow S_3$	244 (5.06)	0.0329	HOMO-5→LUMO	0.592
M06-2X	11	$S_0 \rightarrow S_4$	234 (5.29)	0.0042	HOMO-4→LUMO	0.403
		$S_0 \rightarrow S_5$	232 (5.32)	0.0024	HOMO-2→LUMO+3	0.319
		$S_0 \rightarrow S_6$	231 (5.35)	0.0013	HOMO-4→LUMO	0.348
	1CN	$S_0 \rightarrow S_1$	254 (4.87)	0.0050	HOMO-1→LUMO	0.603
MOGOV		$S_0 \rightarrow S_2$	247 (5.01)	0.0021	HOMO-5→LUMO	0.546
WI00-2A		$S_0 \rightarrow S_3$	244 (5.07)	0.0017	HOMO→LUMO	0.623
		$S_0 \rightarrow S_4$	236 (5.23)	0.0135	HOMO-4→LUMO	0.608

		$S_0 \rightarrow S_5$	235 (5.26)	0.0023	HOMO→LUMO+6	0.325
		$S_0 \rightarrow S_6$	235 (5.27)	0.0021	HOMO-1→LUMO+5	0.351
		$S_0 \rightarrow S_1$	380 (3.25)	0.1207	HOMO→LUMO	0.701
		$S_0 \rightarrow S_2$	355 (3.48)	0.0603	HOMO-2→LUMO	0.690
D2DU/01	4	$S_0 \rightarrow S_3$	352 (3.51)	0.0204	HOMO-1→LUMO	0.696
B3PW91	1	$S_0 \rightarrow S_4$	342 (3.62)	0.0596	HOMO-3→LUMO	0.699
		$S_0 \rightarrow S_5$	296 (4.18)	0.0374	HOMO-4→LUMO	0.691
		$S_0 \rightarrow S_6$	291 (4.25)	0.0713	HOMO-5→LUMO	0.655
		$S_0 \rightarrow S_1$	333 (3.72)	0.0046	HOMO→LUMO	0.697
		$S_0 \rightarrow S_2$	321 (3.85)	0.0016	HOMO-1→LUMO	0.703
D2DU/01	115	$S_0 \rightarrow S_3$	296 (4.17)	0.0143	HOMO-2→LUMO	0.703
B3PW91	IF	$S_0 \rightarrow S_4$	290 (4.26)	0.0001	HOMO-3→LUMO	0.703
		$S_0 \rightarrow S_5$	277 (4.47)	0.0022	HOMO-4→LUMO	0.688
		$S_0 \rightarrow S_6$	265 (4.66)	0.0012	HOMO→LUMO+1	0.671
		$S_0 \rightarrow S_1$	321 (3.85)	0.0075	HOMO-1→LUMO	0.647
		$S_0 \rightarrow S_2$	320 (3.86)	0.0050	HOMO→LUMO	0.653
D2DW01	1 C N	$S_0 \rightarrow S_3$	300 (4.12)	0.0035	HOMO-2→LUMO	0.699
B3PW91	ICN	$S_0 \rightarrow S_4$	291 (4.25)	0.0126	HOMO-3→LUMO	0.703
		$S_0 \rightarrow S_5$	264 (4.69)	0.0044	HOMO-4→LUMO	0.636
		$S_0 \rightarrow S_6$	263 (4.71)	0.0080	HOMO-5→LUMO	0.579
		$S_0 \rightarrow S_1$	442 (2.80)	0.1563	HOMO→LUMO	0.699
		$S_0 \rightarrow S_2$	423 (2.92)	0.0100	HOMO-2→LUMO	0.699
ИСТИ	1	$S_0 \rightarrow S_3$	422 (2.93)	0.0071	HOMO-1→LUMO	0.647
пстп	1	$S_0 \rightarrow S_4$	409 (3.02)	0.0542	HOMO-3→LUMO	0.647
		$S_0 \rightarrow S_5$	335 (3.69)	0.0057	HOMO→LUMO+1	0.683
		$S_0 \rightarrow S_6$	327 (3.79)	0.0344	HOMO-1→LUMO+1	0.524

		$S_0 \rightarrow S_1$	429 (2.88)	0.0032	HOMO→LUMO	0.704
		$S_0 \rightarrow S_2$	421 (2.93)	0.0083	HOMO-1→LUMO	0.702
UCTU	11	$S_0 \rightarrow S_3$	389 (3.18)	0.0187	HOMO-2→LUMO	0.706
пстп	11	$S_0 \rightarrow S_4$	381 (3.24)	0.0001	HOMO-3→LUMO	0.705
		$S_0 \rightarrow S_5$	358 (3.46)	0.0018	HOMO-4→LUMO	0.694
		$S_0 \rightarrow S_6$	329 (3.76)	0.0068	HOMO-5→LUMO	0.692
		$S_0 \rightarrow S_1$	417 (2.97)	0.0020	HOMO→LUMO	0.706
		$S_0 \rightarrow S_2$	412 (3.00)	0.0076	HOMO-1→LUMO	0.706
UCTU	1 <i>C</i> N	$S_0 \rightarrow S_3$	392 (3.15)	0.0023	HOMO-2→LUMO	0.706
HCIH	ICN	$S_0 \rightarrow S_4$	382 (3.24)	0.0181	HOMO-3→LUMO	0.706
		$S_0 \rightarrow S_5$	323 (3.83)	0.0012	HOMO→LUMO+1	0.706
		$S_0 \rightarrow S_6$	321 (3.85)	0.0014	HOMO-1→LUMO+1	0.706
		$S_0 \rightarrow S_1$	474 (2.61)	0.1687	HOMO→LUMO	0.686
		$S_0 \rightarrow S_2$	448 (2.76)	0.0381	HOMO-1→LUMO	0.687
	1	$S_0 \rightarrow S_3$	436 (2.84)	0.0245	HOMO-2→LUMO	0.646
LSDA	1	$S_0 \rightarrow S_4$	415 (2.98)	0.0703	HOMO-3→LUMO	0.645
		$S_0 \rightarrow S_5$	354 (3.49)	0.0518	HOMO→LUMO+1	0.638
		$S_0 \rightarrow S_6$	349 (3.54)	0.0313	HOMO-4→LUMO	0.583
		$S_0 \rightarrow S_1$	446 (2.77)	0.0016	HOMO→LUMO	0.704
		$S_0 \rightarrow S_2$	431 (2.87)	0.0015	HOMO-1→LUMO	0.701
	10	$S_0 \rightarrow S_3$	397 (3.11)	0.0192	HOMO-2→LUMO	0.705
LSDA	11	$S_0 \rightarrow S_4$	379 (3.27)	0.0011	HOMO-3→LUMO	0.705
		$S_0 \rightarrow S_5$	357 (3.46)	0.0020	HOMO-4→LUMO	0.687
		$S_0 \rightarrow S_6$	338 (3.65)	0.0003	HOMO→LUMO+1	0.704

		$S_0 \rightarrow S_1$	427 (2.89)	0.0034	HOMO→LUMO	0.701
		$S_0 \rightarrow S_2$	422 (2.93)	0.0038	HOMO-1→LUMO	0.701
	101	$S_0 \rightarrow S_3$	395 (3.13)	0.0043	HOMO-2→LUMO	0.704
LSDA	ICN	$S_0 \rightarrow S_4$	375 (3.30)	0.0139	HOMO-3→LUMO	0.702
		$S_0 \rightarrow S_5$	331 (3.74)	0.0015	HOMO→LUMO+1	0.704
		$S_0 \rightarrow S_6$	328 (3.77)	0.0005	HOMO-1→LUMO+1	0.704
		$S_0 \rightarrow S_1$	329 (3.76)	0.1856	HOMO→LUMO	0.666
		$S_0 \rightarrow S_2$	304 (4.07)	0.0235	HOMO-1→LUMO	0.580
MOC ON	2	$S_0 \rightarrow S_3$	293 (4.22)	0.0440	HOMO-2→LUMO	0.486
M06-2X	2	$S_0 \rightarrow S_4$	271 (4.56)	0.0532	HOMO-3→LUMO	0.625
		$S_0 \rightarrow S_5$	270 (4.58)	0.0042	HOMO-4→LUMO	0.547
		$S_0 \rightarrow S_6$	256 (4.82)	0.0111	HOMO-5→LUMO	0.669
		$S_0 \rightarrow S_1$	258 (4.79)	0.0087	HOMO→LUMO	0.526
		$S_0 \rightarrow S_2$	254 (4.87)	0.0029	HOMO→LUMO+1	0.481
N/06 037		$S_0 \rightarrow S_3$	245 (5.06)	0.0033	HOMO-4→LUMO+1	0.338
M06-2X	21	$S_0 \rightarrow S_4$	244 (5.07)	0.0045	HOMO-4→LUMO	0.334
		$S_0 \rightarrow S_5$	241 (5.14)	0.0143	HOMO-2→LUMO+1	0.552
		$S_0 \rightarrow S_6$	236 (5.25)	0.0026	HOMO-2→LUMO	0.521
		$S_0 \rightarrow S_1$	253 (4.91)	0.0075	HOMO→LUMO	0.584
		$S_0 \rightarrow S_2$	248 (4.98)	0.0018	HOMO-4→LUMO	0.391
MOC ON		$S_0 \rightarrow S_3$	247 (5.02)	0.0014	HOMO-5→LUMO	0.420
M06-2X	2CN	$S_0 \rightarrow S_4$	241 (5.14)	0.0143	HOMO→LUMO+1	0.503
		$S_0 \rightarrow S_5$	236 (5.24)	0.0061	HOMO-3→LUMO	0.431
		$S_0 \rightarrow S_6$	235 (5.27)	0.0032	HOMO→LUMO+7	0.473

		$S_0 \rightarrow S_1$	380 (3.25)	0.1527	HOMO→LUMO	0.699
		$S_0 \rightarrow S_2$	373 (3.32)	0.0074	HOMO-1→LUMO	0.702
DADUIA1	•	$S_0 \rightarrow S_3$	327 (3.78)	0.0306	HOMO-3→LUMO	0.466
B3PW91	2	$S_0 \rightarrow S_4$	316 (3.92)	0.0230	HOMO-2→LUMO	0.538
		$S_0 \rightarrow S_5$	312 (3.96)	0.0464	HOMO-4→LUMO	0.624
		$S_0 \rightarrow S_6$	294 (4.20)	0.0277	HOMO→LUMO+1	0.703
		$S_0 \rightarrow S_1$	324 (3.81)	0.0052	HOMO→LUMO	0.695
		$S_0 \rightarrow S_2$	319 (3.87)	0.0032	HOMO→LUMO+1	0.695
	3 E	$S_0 \rightarrow S_3$	296 (4.18)	0.0004	HOMO-1→LUMO	0.704
B3PW91	2 F	$S_0 \rightarrow S_4$	292 (4.23)	0.0010	HOMO-1→LUMO+1	0.700
		$S_0 \rightarrow S_5$	281 (4.40)	0.0112	HOMO-2→LUMO+1	0.590
		$S_0 \rightarrow S_6$	280 (4.41)	0.0079	HOMO-2→LUMO	0.585
		$S_0 \rightarrow S_1$	324 (3.81)	0.0052	HOMO→LUMO	0.696
		$S_0 \rightarrow S_2$	319 (3.87)	0.0032	HOMO→LUMO+1	0.695
		$S_0 \rightarrow S_3$	296 (4.18)	0.0004	HOMO-1→LUMO	0.704
B3PW91	2CN	$S_0 \rightarrow S_4$	292 (4.23)	0.0152	HOMO→LUMO+1	0.700
		$S_0 \rightarrow S_5$	281 (4.40)	0.0011	HOMO-2→LUMO+1	0.590
		$S_0 \rightarrow S_6$	280 (4.41)	0.0070	HOMO-2→LUMO	0.585
		$S_0 \rightarrow S_1$	452 (2.74)	0.1372	HOMO→LUMO	0.698
		$S_0 \rightarrow S_2$	445 (2.78)	0.0183	HOMO-→LUMO	0.695
UCTU	2	$S_0 \rightarrow S_3$	370 (3.34)	0.0035	HOMO→LUMO+1	0.696
HUTH	2	$S_0 \rightarrow S_4$	368 (3.37)	0.0002	HOMO-1→LUMO+1	0.701
		$S_0 \rightarrow S_5$	362 (3.42)	0.0203	HOMO-2→LUMO	0.631
		$S_0 \rightarrow S_6$	360 (3.44)	0.0376	HOMO-3→LUMO	0.634

		$S_0 \rightarrow S_1$	417 (2.96)	0.0028	HOMO→LUMO	0.705
		$S_0 \rightarrow S_2$	412 (3.00)	0.0014	HOMO→LUMO+1	0.704
UCTU	ЭГ	$S_0 \rightarrow S_3$	387 (3.20)	0.0000	HOMO-1→LUMO	0.705
пстп	2Γ	$S_0 \rightarrow S_4$	382 (3.24)	0.0011	HOMO-1→LUMO+1	0.706
		$S_0 \rightarrow S_5$	354 (3.49)	0.0563	HOMO-2→LUMO	0.539
		$S_0 \rightarrow S_6$	352 (3.52)	0.0046	HOMO-2→LUMO+1	0.542
		$S_0 \rightarrow S_1$	415 (2.98)	0.0015	HOMO→LUMO	0.706
		$S_0 \rightarrow S_2$	397 (3.12)	0.0109	HOMO→LUMO+1	0.703
UCTU		$S_0 \rightarrow S_3$	393 (3.15)	0.0013	HOMO-1→LUMO	0.704
нстн	2CN	$S_0 \rightarrow S_4$	377 (3.28)	0.0143	HOMO-1→LUMO+1	0.706
		$S_0 \rightarrow S_5$	328 (3.77)	0.0012	HOMO-2→LUMO	0.564
		$S_0 \rightarrow S_6$	319 (3.88)	0.0036	HOMO-2→LUMO+1	0.409
		$S_0 \rightarrow S_1$	450 (2.75)	0.1575	HOMO→LUMO	0.697
		$S_0 \rightarrow S_2$	424 (2.92)	0.0140	HOMO-1→LUMO	0.682
	2	$S_0 \rightarrow S_3$	389 (3.18)	0.0282	HOMO-2→LUMO	0.694
LSDA	2	$S_0 \rightarrow S_4$	384 (3.22)	0.0080	HOMO-3→LUMO	0.684
		$S_0 \rightarrow S_5$	346 (3.40)	0.0046	HOMO→LUMO+1	0.690
		$S_0 \rightarrow S_6$	361 (3.43)	0.0084	HOMO-4→LUMO	0.581
		$S_0 \rightarrow S_1$	427 (2.90)	0.0044	HOMO→LUMO	0.670
		$S_0 \rightarrow S_2$	425 (2.91)	0.0008	HOMO→LUMO+1	0.669
	ЭГ	$S_0 \rightarrow S_3$	388 (3.19)	0.0001	HOMO-1→LUMO	0.694
LSDA	2Γ	$S_0 \rightarrow S_4$	387 (3.20)	0.0051	HOMO-1→LUMO+1	0.698
		$S_0 \rightarrow S_5$	364 (3.40)	0.0574	HOMO-2→LUMO+1	0.540
		$S_0 \rightarrow S_6$	357 (3.46)	0.0042	HOMO-2→LUMO	0.530

		$S_0 \rightarrow S_1$	424(2.92)	0.0010	HOMO→LUMO	0.706
		$S_0 \rightarrow S_2$	403 (3.07)	0.0021	HOMO→LUMO+1	0.702
ISDA	2CN	$S_0 \rightarrow S_3$	394 (3.14)	0.0022	HOMO-1→LUMO	0.700
LSDA	2011	$S_0 \rightarrow S_4$	377 (3.28)	0.0129	HOMO-1→LUMO+1	0.704
		$S_0 \rightarrow S_5$	337 (3.67)	0.0054	HOMO-2→LUMO	0.572
		$S_0 \rightarrow S_6$	327 (3.78)	0.0012	HOMO→LUMO+2	0.681

^a Only the Selected Low-lying Excited States are Presented. ^b Oscillator sSrength. ^c Only the Main Configurations are Presented. ^d The CI Coefficients are in Absolute Values.

Table S12: Calculated Electronic De-Excitation Energies and Corresponding Oscillator Strengths of the Higher Singlet Excited States of **1F-3F** and **1CN-3CN** at DFT/CAM-B3LYP/631G(d) Level of Theory.

molecule	electronic de- excitation ^a	energy (eV)	f^{b}	contrib. ^c	CId
1F	$S_1 \leftarrow S_2 \\ S_2 \leftarrow S_3$	0.74 0.70	$0.0003 \\ 0.0002$	HOMO←LUMO HOMO – 1←LUMO	0.631 0.565
1CN	$S_1 \leftarrow S_2$	0.49	0.0002	HOMO-1←LUMO	0.447
	$S_2 \leftarrow S_3$	0.41	0.0001	HOMO-5←LUMO	0.594
	$S_3 \leftarrow S_4$	0.30	0.0002	HOMO←LUMO	0.350
2F	$S_1 \leftarrow S_2$	0.42	0.0003	HOMO←LUMO	0.568
	$S_2 \leftarrow S_3$	0.31	0.0001	HOMO-1←LUMO	0.383
	$S_3 \leftarrow S_4$	0.23	0.0002	HOMO-1←LUMO	0.409
	$S_4 \leftarrow S_5$	0.19	0.0003	HOMO←LUMO+1	0.477
2CN	$S_1 \leftarrow S_2$	0.48	0.0003	HOMO-2←LUMO	0.631
	$S_2 \leftarrow S_3$	0.39	0.0001	HOMO-4←LUMO	0.509
	$S_3 \leftarrow S_4$	0.33	0.0002	HOMO←LUMO	0.677

3F	$S_1 \leftarrow S_2$ $S_2 \leftarrow S_3$ $S_3 \leftarrow S_4$	0.09 0.07 0.04	$\begin{array}{c} 0.0002 \\ 0.0004 \\ 0.0002 \end{array}$	HOMO←LUMO HOMO-5←LUMO HOMO-1←LUMO	0.657 0.421 0.602
3CN	$S_1 \leftarrow S_2$	0.76	0.0003	HOMO←LUMO	0.693
	$S_2 \leftarrow S_3$	0.51	0.0002	HOMO-1←LUMO	0.640
	$S_3 \leftarrow S_4$	0.33	0.0004	HOMO-4←LUMO	0.404

^a Only the Selected Low-lying Excited States are Presented. ^b Oscillator sSrength. ^c Only the Main Configurations are Presented. ^d The CI Coefficients are in Absolute Values.

Figure S1: Ground state (S₀) optimized structures of **1F-3F** and **1CN-3CN** calculated at CAM-B3LYP/6-31G(d) level with the CPCM solvation model. Hydrogen atoms are omitted for clarity. In **1**, **2** and **3**, the cyanide and the fluoride ions are added at boron atoms with numbering 1. The numbering of atoms of added cyanide is C (62), N (63) and added fluoride is F (62). Geometry at boron centers in **1F-3F** and **1CN-3CN** is tetrahedral.

Figure S2: Potential energy curves of corresponding S_0 states of (I) **1F**, (III) **2F** and (V) **3F**; and corresponding S_1 states of (II) **1F**, (IV) **2F** and (VI) **3F** calculated at the CAM-B3LYP/6-31G(d) level with the CPCM solvation model as functions of the angles mentioned.

Figure S3: Calculated FMO energies for (I) **1** in ground state and excited state (**1_EXC**) (II) **1F** in ground state and excited state (**1F_EXC**) and (III) **1CN** in ground state and excited state (**1CN_EXC**) at CAM-B3LYP/6-31G(d) level using CPCM solvation model.

Figure S4: Calculated FMO energies for (IV) **2** in ground state and excited state (**2_EXC**) (V) **2F** in ground state and excited state (**2F_EXC**) and (VI) **2CN** in ground state and excited state (**2CN_EXC**) at CAM-B3LYP/6-31G(d) level using CPCM solvation model.

Figure S5: Calculated FMO energies for (VII) **3** in ground state and excited state (**3_EXC**) (VIII) **3F** in ground state and excited state (**3F_EXC**) and (IX) **3CN** in ground state and excited state (**3CN_EXC**) at CAM-B3LYP/6-31G(d) level using CPCM solvation model.

Figure S6: Excited state (S₁) optimized structures of 1, 1F, 1CN, 2, 2F, 2CN, 3, 3F and 3CN calculated at CAM-B3LYP/6-31G(d) level with the CPCM solvation model. Hydrogen atoms are omitted for clarity. In 1, 2 and 3, the cyanide and the fluoride ions are added at boron atoms with numbering 1. The numbering of atoms of added cyanide is C (62), N (63) and fluoride is F (62). Geometry at boron centers in 1, 2 and 3 is trigonal planar while as geometry at boron centers in 1F-3F and 1CN-3CN is tetrahedral.

Figure S7: Excited state optimized structures of **1F** (third excited state, S_3), **1CN** (fourth excited state, S_4), **2F** (fifth excited state, S_5), **2CN** (fourth excited state, S_4), **3F** (fourth excited state, S_4) and **3CN** (fourth excited state, S_4) calculated at CAM-B3LYP/6-31G(d) level with the CPCM solvation model. Hydrogen atoms are omitted for clarity.

Figure S8: Scheme of the different mechanisms of fluorescence emission for 2, 2F and 2CN.

Figure S9: Scheme of the different mechanisms of fluorescence emission for 3, 3F and 3CN.

References

 Song, K. C.; Lee, K. M.; Nghia, N. Van; Sung, W. Y.; Do, Y.; Lee, M. H. Synthesis and Anion Binding Properties of Multi-Phosphonium Triarylboranes: Selective Sensing of Cyanide Ions in Buffered Water at pH 7. *Organometallics* 2013, *32*, 817–823.