Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2017

## Supporting Information New Insights to Solubility of Graphene Oxide in Water and Alcohols

Vadim V. Neklyudov<sup>a</sup>, Nail R. Khafizov<sup>a</sup>, Igor A. Sedov<sup>b</sup>, Ayrat M. Dimiev<sup>a\*</sup>

<sup>a</sup> Laboratory for Advanced Carbon Nanomaterials, Kazan Federal University, 18 Kremlevskaya str., 420008, Russian Federation

<sup>b</sup> Department of Physical Chemistry, Kazan Federal University, 18 Kremlevskaya str., 420008, Russian Federation



**Figure S1.** Initial (left) and optimized (right)  $GO-20H_2O$ , GO-20MeOH and GO-20EtOH structures. The optimization was performed using the QM method. Only the structures whose optimization led to a configuration with the lowest total energy are shown. "GO plane" is an averaged plane drawn through the carbon atoms belonging to the oxydized area. "Centroid" is a center of mass of the solvent molecules hydroxyl groups oxygens.



Figure S2. Structure distortion caused by distribution of the functional groups for the structure used in this paper (A) and for the structure with hydroxyl and epoxy groups located at neighboring carbon atoms at the same side of the GO flake (B).

Note, that slight distortion of the given GO model is observed owing to the finite size of the GO skeleton. The influence of the distribution of the functional groups on the degree of the GO flake distortion from the ideal planar structure is given in Figure S2. It can be concluded from Figure S2 that the distortion is a consequence of the close arrangement of the oxygen-containing groups on one side of the GO sheet.

| Bond path between GO          | ρ(r), a.u. | $\nabla$ <sup>2</sup> $\rho(\mathbf{r})$ , | v(r), a.u. | E, kcal·mol- |
|-------------------------------|------------|--------------------------------------------|------------|--------------|
| functional groups and atom of |            | a.u.                                       |            | 1            |
| water molecule                |            |                                            |            |              |
| CO(0(81) U(82)) = O(102)      | 0.057840   | 0.152712                                   | -          | 18.61        |
| GO-O(81)-H(82) O(102)         |            |                                            | 0.059318   |              |
| CO(54) U(77) O(122)           | 0.051067   | 0.138210                                   | _          | 15.47        |
| GO-O(34)-П(77) O(132)         |            |                                            | 0.049304   |              |
| CO(0.057) U(80) $O(111)$      | 0.043867   | 0.127067                                   | _          | 12.46        |
| GO-O(37)-П(80) O(111)         |            |                                            | 0.039724   |              |
| CO(0.0(85)) U(86) = O(117)    | 0.033411   | 0.108185                                   | -          | 8.58         |
| GO-O(83)-П(80) O(117)         |            |                                            | 0.027357   |              |
| $CO(0(55) \cup (78)) = O(00)$ | 0.063693   | 0.148173                                   | -          | 20.62        |
| GO-O(33)-П(78) O(99)          |            |                                            | 0.065716   |              |
| CO(0.62) U(76) O(144)         | 0.054575   | 0.140032                                   | -          | 16.78        |
| GO-O(33)-П(76) O(144)         |            |                                            | 0.053489   |              |
| CO(H(78))O(55) = H(145)       | 0.034473   | 0.115246                                   | -          | 9.19         |
| ОО-п(78)-О(33) П(143)         |            |                                            | 0.029303   |              |

Table S1. Topological parameters of hydrogen bonds in the GO-H<sub>2</sub>O solvate

|                           | 0.000400 | 0 101020 |          | 7.04  |
|---------------------------|----------|----------|----------|-------|
| GO-H(82)-O(81) H(142)     | 0.028403 | 0.101032 | -        | /.04  |
|                           |          |          | 0.022436 |       |
| CO(H(7C))O(52) = H(127)   | 0.033738 | 0.114574 | -        | 8.94  |
| GO-H(70)-O(55) H(157)     |          |          | 0.028509 |       |
| CO(H(76))O(52) = H(140)   | 0.020701 | 0.071303 | -        | 4.56  |
| во-п(70)-0(33) п(140)     |          |          | 0.014529 |       |
| CO(H(78))O(55) = H(07)    | 0.025998 | 0.090331 | -        | 6.18  |
| GO-H(78)-O(55) H(97)      |          |          | 0.019704 |       |
| GO-H(84)-O(83) H(116)     | 0.037731 | 0.128272 | -        | 10.62 |
|                           |          |          | 0.033856 |       |
| CO(H(90)) O(57) = H(121)  | 0.023168 | 0.082149 | _        | 5.34  |
| GO-H(80)-O(37) H(121)     |          |          | 0.017019 |       |
| CO(H(Q(1) O(Q5)) = H(125) | 0.031638 | 0.108179 | _        | 8.13  |
| GO-H(80)-O(85) H(125)     |          |          | 0.025919 |       |
| CO(H(70))O(5(1)) H(100)   | 0.042359 | 0.135774 | _        | 12.46 |
| GO-H(79)-O(56) H(100)     |          |          | 0.039726 |       |
|                           | 0.010142 | 0.034498 | -        | 1.95  |
| GU-H(86)-U(85) H(110)     |          |          | 0.006220 |       |
| CO(O(51)) = U(110)        | 0.015835 | 0.064705 | -        | 3.64  |
| GU-U(51) H(110)           |          |          | 0.011610 |       |

 $\rho(r)$  - electron density in BCPs,  $\nabla^2 \rho(r)$  - Laplacian of electron density in BCPs, v(r) - potential energy density in BCPs, E - the bond energy calculated according to eq.(1).

| Table S2 | . Topological | parameters of hydrogen | bonds in the | GO-MeOH solvate |
|----------|---------------|------------------------|--------------|-----------------|
|----------|---------------|------------------------|--------------|-----------------|

| Bond path between GO            | ρ(r), a.u. | $\nabla$ <sup>2</sup> $\rho(\mathbf{r})$ , | v(r), a.u. | Е,         |
|---------------------------------|------------|--------------------------------------------|------------|------------|
| functional groups and atom of   |            | a.u.                                       |            | kcal·mol-1 |
| methanol molecule               |            |                                            |            |            |
| $GO_{-}O(54)_{-}H(77) = O(99)$  | 0.016806   | 0.058082                                   | -          | 3.66       |
| 00-0(54)-11(77) 0(55)           |            |                                            | 0.011676   |            |
| $GO_{-}O(55)_{-}H(78) = O(125)$ | 0.052021   | 0.142075                                   | -          | 15.90      |
| GO-O(55)-II(76) O(125)          |            |                                            | 0.050692   |            |
| $GO_{-}O(57)_{-}H(80) = O(103)$ | 0.042303   | 0.134093                                   | -          | 12.40      |
| 00-0(57)-11(00) 0(105)          |            |                                            | 0.039518   |            |
| $GO_{-}O(53)_{-}H(76) = O(97)$  | 0.051185   | 0.147520                                   | -          | 15.98      |
| 00-0(55)-11(70) 0(57)           |            |                                            | 0.050935   |            |
| GO-H(76)-O(53) H(120)           | 0.040928   | 0.135378                                   | -          | 11.93      |
|                                 |            |                                            | 0.038010   |            |
| $GO_{-}H(78)_{-}O(55) = H(94)$  | 0.028587   | 0.104855                                   | -          | 7.32       |
| 00-m(78)-0(55) m(94)            |            |                                            | 0.023317   |            |
| $GO_{-}H(77)_{-}O(54) = H(116)$ | 0.021421   | 0.078499                                   | -          | 4.83       |
| 00-II(77)-0(34) II(110)         |            |                                            | 0.015385   |            |
| $GO_{-}H(84)_{-}O(83) = H(114)$ | 0.022097   | 0.081318                                   | -          | 5.04       |
| 00-11(04)-0(05) 11(114)         |            |                                            | 0.016069   |            |
| $GO_{-}H(80)_{-}O(57) = H(106)$ | 0.009243   | 0.030695                                   | -          | 1.75       |
| 00-11(00)-0(37) 11(100)         |            |                                            | 0.005564   |            |
| CO(H(80)) O(57) = H(100)        | 0.025535   | 0.092904                                   | -          | 6.12       |
| 00-11(00)-0(37) 11(100)         |            |                                            | 0.019514   |            |
| CO H(86) O(85) H(112)           | 0.029352   | 0.104344                                   | -          | 7.43       |
|                                 |            |                                            | 0.023667   |            |
| GO-H(86)-O(85) H(108)           | 0.027516   | 0.096251                                   | -          | 6.74       |

|                          |          |          | 0.021470 |      |
|--------------------------|----------|----------|----------|------|
| CO(11(82))O(81) = U(124) | 0.034871 | 0.119420 | -        | 9.48 |
| 00-11(82)-0(81) 11(124)  |          |          | 0.030221 |      |

Table S3. Topological parameters of hydrogen bonds in the GO-EtOH solvate

| Bond path between GO functional groups and atom of | ρ(r), a.u. | $\nabla$ $^{2}\rho(r)$ , a.u. | v(r), a.u. | E,<br>kcal∙mol-1 |
|----------------------------------------------------|------------|-------------------------------|------------|------------------|
| ethanol molecule                                   |            |                               |            |                  |
| CO(0.057) H(80) = O(101)                           | 0.009184   | 0.034239                      | -          | 1.80             |
| ОО-О(37)-Н(80) О(101)                              |            |                               | 0.005740   |                  |
| CO(0.085) H(86) O(107)                             | 0.054377   | 0.149557                      | -          | 17.19            |
| 00-0(83)-11(80) 0(107)                             |            |                               | 0.054774   |                  |
| $GO_{-}O(56)_{-}H(79) = O(91)$                     | 0.010090   | 0.036923                      | -          | 2.13             |
| 00-0(50)-11(75) 0(51)                              |            |                               | 0.006801   |                  |
| $GO_{-}O(53)_{-}H(76) = O(97)$                     | 0.015127   | 0.053129                      | -          | 3.14             |
| GG-G(55)-II(70) G(57)                              |            |                               | 0.010017   |                  |
| $GO_{-}O(55)_{-}H(78) = O(95)$                     | 0.043285   | 0.127249                      | -          | 12.38            |
| GG-G(55)-II(78) G(55)                              |            |                               | 0.039455   |                  |
| $GO_{-}H(86)_{-}O(85) = H(112)$                    | 0.024617   | 0.084172                      | -          | 5.65             |
| GO-II(60)-O(65) II(112)                            |            |                               | 0.018019   |                  |
| $GO_{-}H(86)_{-}O(85) = H(100)$                    | 0.025928   | 0.091128                      | -          | 6.19             |
| GO-II(00)-O(05) II(100)                            |            |                               | 0.019729   |                  |
| GO-H(84)-O(83) $H(106)$                            | 0.026518   | 0.096613                      | -          | 6.50             |
| 00-11(84)-0(85) 11(100)                            |            |                               | 0.020722   |                  |
| $GO_{-}H(77)_{-}O(54) = H(116)$                    | 0.026562   | 0.098652                      | -          | 6.58             |
| 00-11(77)-0(34) 11(110)                            |            |                               | 0.020971   |                  |
| CO(H(84))O(83) = H(114)                            | 0.011815   | 0.040381                      | -          | 2.30             |
| 00-11(84)-0(85) 11(114)                            |            |                               | 0.007344   |                  |
| CO(H(82))O(81) = H(124)                            | 0.028149   | 0.102045                      | -          | 7.09             |
| 00-11(82)-0(81) 11(124)                            |            |                               | 0.022608   |                  |
| CO(H(79))O(56) H(96)                               | 0.033343   | 0.115629                      | -          | 8.93             |
| 00-11(79)-0(30) 11(90)                             |            |                               | 0.028455   |                  |
| CO(H(78))O(55) H(126)                              | 0.023661   | 0.084544                      | -          | 5.46             |
| 00-11(70)-0(33) 11(120)                            |            |                               | 0.017401   |                  |
| $GO_{-}H(78)_{-}O(55) = H(94)$                     | 0.014313   | 0.046806                      | -          | 2.76             |
| 00-11(70)-0(33) 11(94)                             |            |                               | 0.008800   |                  |

Table S4. Structural parameters of hydrogen bonds in the GO- $H_2O$  solvate. The O ... HO angle appears in bold

| Bond path between GO functional groups and atom of molecule water | H O distance,<br>Å | Angle,<br>° | O O distance,<br>Å |
|-------------------------------------------------------------------|--------------------|-------------|--------------------|
| GO-O(81)-H(82) O(102)                                             | 1.59352            | 165.94<br>8 | 2.59907            |
| GO-O(54)-H(77) O(132)                                             | 1.65360            | 152.39<br>8 | 2.60059            |
| GO-O(57)-H(80) O(111)                                             | 1.71935            | 159.68<br>2 | 2.68824            |
| GO- <b>O(85)-H(86) O(117)</b>                                     | 1.83032            | 154.62<br>7 | 2.76642            |
| GO-O(55)-H(78) O(99)                                              | 1.57007            | 167.94<br>5 | 2.58725            |
| GO-O(53)-H(76) O(144)                                             | 1.63664            | 153.29<br>8 | 2.58999            |
| GO-H(78)-O(55) H(145)-O(144)                                      | 1.80728            | 165.24<br>9 | 2.77454            |
| GO-H(82)-O(81) H(142)-O(141)                                      | 1.86721            | 170.76<br>7 | 2.84802            |
| GO-H(76)-O(53) H(137)-O(135)                                      | 1.80729            | 170.68<br>8 | 2.78961            |
| GO-H(76)- <b>O(53) H(140)-O(138)</b>                              | 2.04174            | 151.58<br>2 | 2.94441            |
| GO-H(78)-O(55) H(97)-O(96)                                        | 1.92377            | 164.77<br>8 | 2.88750            |
| GO-H(84)- <b>O(83) H(116)-O(114)</b>                              | 1.74917            | 170.07<br>3 | 2.73486            |
| GO-H(80)-O(57) H(121)-O(120)                                      | 1.97301            | 154.82<br>9 | 2.89635            |
| GO-H(86)-O(85) H(125)-O(123)                                      | 1.83951            | 162.01<br>2 | 2.79813            |
| GO-H(79)- <b>O(56) H(100)-O(99)</b>                               | 1.72717            | 158.13<br>4 | 2.67454            |
| GO-H(86)- <b>O(85) H(110)-O(108)</b>                              | 2.37375            | 145.50<br>6 | 3.22997            |
| GO- <b>O(51) H(110)-O(108)</b>                                    | 2.13445            | 127.63<br>3 | 2.84133            |

Table S5. Structural parameters of hydrogen bonds in GO-MeOH solvate. The O ... HO angle appears in bold

| Bond path between GO functional      | H O distance, | Angle,  | O O distance, |
|--------------------------------------|---------------|---------|---------------|
| groups and atom of molecule methanol | Å             | 0       | Å             |
| GO-O(54)-H(77) O(99)                 | 2.15991       | 130.907 | 2.91179       |
| GO-O(55)-H(78) O(125)                | 1.64594       | 170.781 | 2.65168       |
| GO-O(57)-H(80) O(103)                | 1.71134       | 161.334 | 2.68296       |
| GO- <b>O(53)-H(76) O(97)</b>         | 1.64019       | 162.341 | 2.62161       |

| GO-H(76)-O(53) H(120)-O(119) | 1.72156 | 173.656 | 2.71401 |
|------------------------------|---------|---------|---------|
| GO-H(78)-O(55) H(94)-O(93)   | 1.85974 | 162.403 | 2.81722 |
| GO-H(77)-O(54) H(116)-O(115) | 2.00000 | 174.778 | 2.97604 |
| GO-H(84)-O(83) H(114)-O(113) | 1.98315 | 155.158 | 2.90282 |
| GO-H(80)-O(57) H(106)-O(105) | 2.42825 | 142.131 | 3.25590 |
| GO-H(80)-O(57) H(100)-O(99)  | 1.91571 | 175.637 | 2.89706 |
| GO-H(86)-O(85) H(112)-O(111) | 1.86444 | 169.598 | 2.83983 |
| GO-H(86)-O(85) H(108)-O(107) | 1.90465 | 157.651 | 2.84059 |
| GO-H(82)-O(81) H(124)-O(123) | 1.78876 | 167.275 | 2.76630 |

| Bond path between GO functional groups | H O distance, | Angle,  | O O distance, |
|----------------------------------------|---------------|---------|---------------|
| and atom of molecule ethanol           | Å             | 0       | Å             |
| GO- <b>O(57)-H(80) O(101)</b>          | 2.38825       | 139.857 | 3.20970       |
| GO- <b>O(85)-H(86) O(107)</b>          | 1.62157       | 154.725 | 2.58085       |
| GO-O(56)-H(79) O(91)                   | 2.42412       | 117.199 | 3.01819       |
| GO-O(53)-H(76) O(97)                   | 2.18712       | 138.376 | 2.99654       |
| GO-O(55)-H(78) O(95)                   | 1.72035       | 160.450 | 2.69092       |
| GO-H(86)-O(85) H(112)-O(111)           | 1.96023       | 171.639 | 2.93713       |
| GO-H(86)-O(85) H(100)-O(99)            | 1.92069       | 169.734 | 2.89846       |
| GO-H(84)-O(83) H(106)-O(105)           | 1.90409       | 163.780 | 2.86421       |
| GO-H(77)-O(54) H(116)-O(115)           | 1.89512       | 161.045 | 2.84585       |
| GO-H(84)-O(83) H(114)-O(113)           | 2.28427       | 147.131 | 3.14960       |
| GO-H(82)-O(81) H(124)-O(123)           | 1.88007       | 160.333 | 2.82847       |
| GO-H(79)-O(56) H(96)-O(95)             | 1.81070       | 175.479 | 2.79956       |
| GO-H(78)-O(55) H(126)-O(125)           | 1.95766       | 177.861 | 2.94278       |
| GO-H(78)-O(55) H(94)-O(93)             | 2.21570       | 154.193 | 3.12797       |

Table S6. Structural parameters of hydrogen bonds in GO-EtOH solvate. The O ... HO angle appears in bold



**Figure S3.** Distribution of the H ... O distances between the atoms of the GO and atoms of the solvent molecules involved in H-bonding. Blue, red and green columns correspond to water, methanol and ethanol molecules, respectively.



**Figure S4.** Distribution of the H-bond angles between GO and solvent molecules involved in H-bonding. Blue, red and green columns correspond to water, methanol and ethanol molecules, respectively.



**Figure S5.** Distribution of the O ... O distances between the atoms of the GO and atoms of the solvent molecules involved in H-bonding. Blue, red and green columns correspond to water, methanol and ethanol molecules, respectively.



**Figure S6.** The GO solvate structures optimized with and without Grimme dispersion correction. Structural and topological parameters for the type I and II hydrogen bonds are listed in **Table S1.** 

**Table S7.** Structural and topological parameters of type I and II hydrogen bonds between GO and water, methanol and ethanol molecules with and without Grimme dispersion correction

| Bond                                       | НО          | Angle         | $\rho(\mathbf{r}), a.u.$ | $\nabla^2 \rho(\mathbf{r}), a.u.$ | v(r), a.u. | E,                     |
|--------------------------------------------|-------------|---------------|--------------------------|-----------------------------------|------------|------------------------|
|                                            | distance, Å | OHO, °        |                          |                                   |            | kcal·mol <sup>-1</sup> |
|                                            |             |               | <b>GO-water</b>          |                                   |            |                        |
|                                            | B           | 3LYP/6-31G(d) | without Grin             | nme's correcti                    | on         |                        |
| Ι                                          | 1.80461     | 169.24        | 0.038689                 | 0.109944                          | -0.033242  | 10.43                  |
| II                                         | 1.89604     | 146.20        | 0.029402                 | 0.094604                          | -0.025836  | 8.11                   |
|                                            | W           | B97XD/6-31G   | (d) with Grin            | nme's correctio                   | on         | -                      |
| Ι                                          | 1.78676     | 179.99        | 0.037301                 | 0.119988                          | -0.033181  | 10.41                  |
| II                                         | 2.10462     | 124.80        | 0.029554                 | 0.097464                          | -0.027346  | 8.58                   |
|                                            |             | C             | GO-methano               | l                                 |            |                        |
| B3LYP/6-31G(d) without Grimme's correction |             |               |                          |                                   |            |                        |
| Ι                                          | 1.80837     | 169.42        | 0.037803                 | 0.108763                          | -0.032216  | 10.11                  |
| II                                         | 1.90753     | 145.36        | 0.029048                 | 0.093477                          | -0.025546  | 8.02                   |
|                                            | W           | B97XD/6-31G   | (d) with Grin            | nme's correctio                   | n          |                        |
| Ι                                          | 1.78804     | 166.40        | 0.038690                 | 0.117139                          | -0.033884  | 10.63                  |
| II                                         | 1.90387     | 144.20        | 0.029169                 | 0.095709                          | -0.026172  | 8.21                   |
|                                            |             |               | GO-ethanol               |                                   |            |                        |
| B3LYP/6-31G(d) without Grimme's correction |             |               |                          |                                   |            |                        |
| Ι                                          | 1.80693     | 170.34        | 0.037996                 | 0.109005                          | -0.032315  | 10.14                  |
| II                                         | 1.91775     | 144.635       | 0.028379                 | 0.091538                          | -0.024960  | 7.83                   |
| wB97XD/6-31G(d) with Grimme's correction   |             |               |                          |                                   |            |                        |
| Ι                                          | 1.74160     | 165.80        | 0.036652                 | 0.103031                          | -0.030652  | 9.62                   |
| II                                         | 2.01956     | 128.61        | 0.020996                 | 0.080195                          | -0.020996  | 6.59                   |

In addition, the calculations with Grimme dispersion correction implemented in the GAUSSIAN 09 package were performed. As this type of calculations are very time consuming we carried out the optimization at the wB97XD/6-31G(d) level of theory. For the same reason, we only considered interactions of single solvent molecule with the GO flake without taking into account implicit solvent effects. The analysis of these data allows us to conclude that for the present structures the dispersion correction does not influence the H-bonds energetical characteristics. Of course, the dispersion correction may play a significant role when the interactions between alcohol molecules and GO unoxidized areas are considered. The latter, however, constitute only a minor part of the GO surface while the major is covered by oxygen-containing groups capable of forming of H-bonds. Moreover, the authors of work [*A.V. Shishkina, V.V. Zhurov. A.I. Stash, M.V. Vener, A.A. Pinkerton and V.G. Tsirelson, Cryst. Growth Des., 2013, 13, 816–828*] showed that it is impossible to simultaneously estimate the strong and weak interactions when Grimme dispersion correction is taken into consideration.