Supporting Information

The mechanism of ammonium bisulfate formation and decomposition over V/WTi catalysts for NH₃-selective catalytic reduction at various temperature

Chenxu Li^a, Meiqing Shen^{*a,b,c}, Tie Yu^a, Jianqiang Wang^a, Jun Wang^a and Yanping Zhai^{*d}

^a Key Laboratory for Green Chemical Technology of State Education Ministry,

School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China

^b Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China

^c State Key Laboratory of Engines, Tianjin University, Tianjin 300072, PR China

^d Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023,

PR China

^e China Huadian Science and Technology Institute, Beijing 100070, PR China

* Corresponding author: Meiqing Shen, Yanping Zhai

Postal address:

School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China China Huadian Science and Technology Institute, Beijing 100070, China Email: mqshen@tju.edu.cn; yanpingzhai@chai.ac.cn Tel./Fax: (+86) 22-27892301; (+86)-10-59216261

Catalyst preparation

The V₂O₅/WO₃-TiO₂ catalyst with 1wt % V₂O₅ was prepared by incipient wetness impregnation method. Commercial support (DT-52) was obtained from Millennium Inorganic Chemicals Inc. The complex of VO(CO₂)₂ was prepared by mixing V₂O₅ powder with oxalic acid liquid (1 M) with continuous stirring at 70 °C for 30 min. Subsequently, the WTi powder was added into the mixed solution and stirred for 1 h. This mixture was statically dried overnight at 100 °C and calcined at 500 °C for 5 h and named as V/WTi-F.

Design and preparation of reference samples

In order to illustrate the mechanisms of ammonium (bi)sulfate species formation and decomposition over V/WTi catalyst, a series of reference samples were prepared as follows, which were pretreated for temperature programmed decomposition (TPDC).

Samples mechanically mixed with 10 % NH₄HSO₄ or 10 % (NH₄)₂SO₄

The V/WTi-F catalysts were mechanically mixed with 10 % NH_4HSO_4 or 10 % $(NH_4)_2SO_4$ sufficiently and the obtained samples were donated as V/WTi-F- NH_4HSO_4 and V/WTi-F- $(NH_4)_2SO_4$, respectively.

Samples impregnated with 1 % or 10 % ABS

1 % or 10 %ABS species were deposited on V/WTi-F through the wet impregnation method. In order to simulate the samples sulfated under *in situ* condition at different temperature, these samples were calcined at 200, 250 and 300 °C for 24 h, respectively.

Characterization

Temperature-programmed decomposition (TPDC) experiment was carried out on MKS-2030. For TPDC, 0.2 g sample was loaded and preheated to 80 °C in N₂ for 0.5 h to remove any weakly adsorbed impurities. The concentration of SO₂ originated from the decomposition of ammonium (bi)sulfate species was recorded when the temperature was elevated from 80 °C to 600 °C with a 10 °C min⁻¹ ramping rate.

Fig. S1 the NH_3 -SCR performance of these samples for the second round test: (a) NO_x conversion and (b) N_2O concentration.

Fig.S2 NH₃-TPD profile of the obtained catalysts.

Fig.S3 The TPDC profiles of SO₂ on V/WTi-F mechanically mixed with 10 % NH_4HSO_4 or 10 % $(NH_4)_2SO_4$ (a) and V/WTi-F deposited with 1 % and 10 % ABS by wet impregnation calcined at 200 °C, 250 °C and 300 °C for 24 h, respectively (b).

Fig.S4 the bands between 2200-1800 cm⁻¹ of V/WTi exposed SO₂+O₂ for 2 h and purged with N_2

for 1 h at 200 °C (a), 250 °C (b) and 300 °C (c), respectively.

Fig.S5 in situ FTIR spectra of V/WTi under different conditions at 200 °C (a), 250 °C (b) and 300

°C (c).

Fig.S6 in situ FTIR spectra of V/WTi pretreated by NH₃ exposed to SO₂+O₂ for 0 min and 150 min

time at 200 $^{\circ}$ C (a), 250 $^{\circ}$ C (b) and 300 $^{\circ}$ C (c), respectively.

Fig.S7 in situ FTIR spectra of V/WTi under different conditions at 200 °C (a), 250 °C (b) and 300

°C (c), respectively.

Fig.S8 *in situ* FTIR spectra of V/WTi exposed to NH₃+ SO₂+O₂+H₂O for various time at 200 °C

(a), 250 $^{\circ}$ C (b) and 300 $^{\circ}$ C (c), respectively.

H₂O+NH₃+SO₂+O₂ co-adsorption

Fig.S9 *in situ* FTIR spectra of V/WTi exposed to $NH_3 + SO_2 + O_2$ with or without H_2O for 150 min at 200 °C (a), 250 °C (b) and 300 °C (c), respectively.

The water vapor is introduced to simulate the real operation process. In Fig.S8(a), the band at 1617 cm⁻¹ attituded to H₂O is observed at first 2 min ¹. With time increasing, the bands at 1667, 1603, 1426 and 1225 cm⁻¹ assigned to adsorbed ammonium species and the bands at 1256, 1180, 1084 cm⁻¹ attributed to ABS also appear. As shown in Fig.S9 (a), the intensities of bands at 1426, 1184 and 1080 cm⁻¹ increase with the presence of H₂O, which indicates that more ABS species form. The bands at 1603 and 1225 cm⁻¹ obviously decrease, which reveals that the presence of H₂O promotes to generate more Brønsted acid sites and is beneficial for the formation of ABS. At 250 °C, the similar phenomenon could be detected. At 300 °C, the bands ascribed to NH₄⁺ species remain also unchanged, while the bands attributed to sulfate species sharply decrease with the H₂O adding, as shown in Fig.S9 (c). These results indicate that the competitive adsorption of H₂O on the catalyst results in less ABS species.

Fig.S10 the integral conversion of NH_4^+ adsorbed on Brønsted acid sites (1426 cm⁻¹) over the catalyst pretreated by exposing to NH_3^+ SO₂+O₂ for 12h as a function of time in the presence of N₂ purging at 300 °C.

Fig. S11 in situ FTIR spectra of V/WTi exposed to NH₃-SCR with or without SO₂ at 200 °C (a),

250 °C (b) and 300 °C (c), respectively.

References

1. W. Xu, H. He and Y. Yu, J. Phys. Chem. C, 2009, 113, 4426-4432.