Growth of LaCO₃OH nanowires on Ag₃PO₄ dodecahedron and their efficient photocatalytic activity for RhB degradation under visible light.

Virendrakumar G. Deonikar^a, Santosh S. Patil^a, Mohaseen S. Tamboli^a, Jalindar D. Ambekar^a, Milind V. Kulkarni^a, Rajendra Panmand^a, Govind G. Umargi, Manish D. Shinde^a, Sunit B.Rane^a, Nagegownivari. R. Munirathnam^a, Deepak R. Patil^{*a} and Bharat B. Kale^{*a}

^aCentre for Materials for Electronics Technology (C-MET), Ministry of Electronics and Information Technology (MeitY), Govt. of INDIA, Pune, INDIA.

Supporting Information

S1-S3: EDAX profile and HRTEM analysis of samples

Fig. S1 (a), (b)EDAX profile of APO/LCO-2 sample.

Fig.S2 (a) TEM image of APO with THF as a solvent, (b) HRTEM, (c) EDAX profile of APO with THF sample and (d) the corresponding fast Fourier Transform patterns of Ag_3PO_4 .

Fig.S3 (a) TEM image of LCO with THF as a solvent, (b) HRTEM, (c) EDAX profile of LCO with THF sample and (d) the corresponding fast Fourier Transform patterns of $LaCO_3OH$.

<u>S4: Photocatalytic recyclability study of the as prepared photocatalyst sample</u>

Fig. S4. UV-Visible spectra of RhB degradation using APO/LCO-2 recyclable catalyst

Table S1: Recyclability photocatalytic activity study of APO/LCO-2 catalyst.

Catalyst	Experiment	RhB degraded (%)
APO/LCO-2	First run	98.72
	Second run	96.96
	Third run	94.59

S5: TEM images of APO/LCO-2 sample

Fig. S5 (a)- (f) TEM images of APO/LCO-2 shows growth mechanism of LCO rods on APO, (g) EDAX profile of APO/LCO-2 sample.

Sr. No.	Material/Compo site	Composition	Percentages of RhB degradation	RhB degradatio n time	References
1.	Ag ₃ PO ₄		100%	75 min.	1
2.	Ag3PO ₄ /BiVO ₄ nanocomposite	(molar ratio = 0.8:1.0)	100%	120 min.	1.
3.	Ag ₃ PO ₄	Used NH ₃ .H ₂ O (to maintain pH=7)	63%	140 min.	2.
4.	Ag ₃ PO ₄	Used H_3PO_4 (to maintain pH=7)	24%	140 min.	2.
5.	Ag ₃ PO ₄		64%	180 min.	3.
6.	$RGO-Ag_3PO_4$	2% RGO- Ag ₃ PO ₄	98%	180 min.	3.
7.	Ag ₃ PO ₄		60%	100 min.	4.
8.	Ag ₃ PO ₄ /Bi ₂ MoO ₆	10.0 wt% Ag ₃ PO ₄ /	98%	100 min.	4.
		Bi ₂ MoO ₆			
9.	Ag ₃ PO ₄		75.4%	40 min.	5.
10.	Ag_3PO_4/C_3N_4	92% Ag ₃ PO ₄ - C ₃ N ₄	95.7%	40 min.	5.
	composite				
11.	Ag/Ag ₃ PO ₄	composite	100%	120 min.	6.
12.	AgI/Ag ₃ PO ₄	composite	100%	60 min.	6.

Table S2. Comparative study of APO/LCO photocatalyst samples with the literature of Ag_3PO_4 heterostructures

S6:Current –Voltage characteristic

Fig. S6. I-V curve of (a)APO, APO/LCO, APO/LCO-2, APO/LCO-5 samples in dark (b) I-V curve of APO, APO/LCO, APO/LCO-2, APO/LCO-5 samples in light.

S7:Electrochemical Impedance Spectroscopy (EIS)

Fig. S7. (a) EIS performance of APO, APO/LCO, APO/LCO-2 and APO/LCO-5 composites in dark (b) EIS performance of APO, APO/LCO, APO/LCO-2 and APO/LCO-5 composites inpresence of light .

References:

- 1 J. Chen, L-L Jiang, X-P Liu, C-J Mao, J-M Song, H. Niu, S. Zhang, J Nanopart Res., 2017

- J. Chen, L-L Jiang, X-P Liu, C-J Mao, J-M Song, H. Niu, S. Zhang, J Nanopart Res., 2017 19,159, 1-11.
 R. Guo, Y. Fan, Y. Tang, RSC Adv., 2017, 7, 23977-23981.
 L. Wang, Y. Zhou, Fullerenes, Nanotubes and Nanostructures, 2016, 588-593.
 S. Sitthichai, S.Jonjana, A. Phuruangrat, B. Kuntalue, T. Thongtem, S. Thongtem, Journal- Ceramic Society Japan, 2017, 125, 387-390.
 B. Chai, F. Zou, W. Chen, Journal of Materials Research, 2015, 30,1128-1136.
 I. Tang W. Gong T. Cai, T. Xie, C. Deng, Z. Peng, Q. Deng, RSC Adv., 2013,3, 2543-2547.