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FIG. S1: Illustration of the path for the contour integration when the integrand f(z) has only one pole at the

origin z = 0. The contour in the complex plane is an almost full square passing through four points: −∞,

+∞, +∞− ib, and −∞− ib but avoiding the origin around which the path goes along a small semicircle

of radius a either above (left) or below (right) the real axis. When taking a → 0, the integration over the

semicircle contributes −iπRes[f(z), z = 0] (left) or iπRes[f(z), z = 0] (right). Using either of the pathes

and the residue theorem, the principal value of the integral defined as the sum of the two integrals: f(x) over

the interval [−∞, a] and f(x) over the interval [a,∞] at the limit of a→ 0 is given by−iπRes[f(z), z = 0].

This supporting information provides an alternative way to derive the exact solutions to the one-

dimensional nearest-neighbor model explained in the main text. For a nearest neighbor interaction

w(x) = w(x)ε(2σ − x) where ε(x) is the step function, the usual configuration energy can be

simplified as

U(x̄) =
N∑
i<j

w(xi − xj) =
N∑
i=1

w(xi − xi+1), (S1)

where x̄ denotes the collective variable x̄ = x1, x2, · · · , xN . This simplification allows us to work

out the partition function of the isothermal-isobaric ensemble (NPT) [1]

QNPT =

∫
· · ·
∫

x0<···<xN

dx̄ e−βU(x̄)e−βw(x1−x0)e−PV =

{∫ ∞
0

dx exp [−β(w(x) + Px)]

}N
(S2)

where V = xN − x0 is the volume (length), β = 1/kbT is the usual inverse temperature and P is

the pressure with unit of force in one dimension. Consequently, the derivative of the free energy,

−β lnQNPT with respect to the pressure yields the usual equation of state

ρB = − L(s)

L′(s)

∣∣∣∣
s=βP

, (S3)

where L(s) is the Laplace transform of the boltzmann factor exp(−βu) defined in the main text

L(s) =

∫ ∞
0

dx e−βw(x)e−sx. (S4)
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Although the derivation of the exact thermodynamics for the nearest neighbor model is straight-

forward, it is much more involved to obtain the structural properties in ordinary closed forms.

Exact solution for the fourier transform of the pair direct correlation function defined as

ĉ(k) =

∫ ∞
−∞

dx c(x)e−ikx ↔ c(x) =
1

2π

∫ ∞
−∞

dk c(k)eikx, (S5)

was obtained by Percus[2]. Using the physical meaning of the pair correlation function, we here

provide an alternative derivation which leads to a transparent understanding of the structure prop-

erties in both real and reciprocal spaces.

The probability of finding a nearest (1-st order) neighbor in the vicinity of x given that there is

one particle located at the origin is simply found to be:

ρBg1(x) dx =
exp(−βw(x)− s|x|)

L(s)
ε(|x| − σ) dx. (S6)

g1(x) is an even function and the normalization condition requires
∫∞
−∞ dx ρ

Bg1(x) = 2, which

means that there are two nearest neighbors, one on the left of the given particle and the other on

its right. Furthermore, the probability of finding its next-to-nearest (2-nd order) neighbor in one

direction (e.g. the right) is given by the convolution of two ρBg1(x) functions

ρBg2(x) dx =

∫ x−σ

σ

dy ρBg1(y)ρBg1(x− y) · ε(x− 2σ) dx for x > 0 (S7)

Following this argument, we find that the usual pair correlation function g(x) for which ρBg(x)dx

gives the conditional probability of finding any other particle in the vicinity of x is the sum of the

probabilities of finding any n-th order neighbor

ρBg(x) =
∞∑
n=1

ρBgn(x) (S8)

with ρBgn(x) given by the convolution between ρBgn−1(x) and ρBg1(x)

ρBgn(x) dx =

∫ x−σ

(n−1)σ

dy ρBgn−1(y)ρBg1(x− y) · ε(x− nσ) dx for x > 0 (S9)

and gn(x) is always an even function. It is instructive to write the fourier transform of g1(x) as the

sum of a ratio between two Laplace transform and its complex conjugates

ρB ĝ1(k) = J(k, s) + c.c. =
L(s+ ik)

L(s)
+ c.c. (S10)

The complex conjugate of the preceding terms is generally abbreviated as c.c., which specifically

stands for J∗(k, s) = J(−k, s) in the above eq. (S10). Using the convolution expression eq. (S9)
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for ρBgn(x) and repeatedly inserting the definition eq. (S10) for J(k, s), one simply arrives at the

fourier transform of gn(x)

ρB ĝn(k) = Jn(k, s) + c.c.. (S11)

Therefore, the fourier transform of the pair correlation function is given by

ρB ĝ(k) =
∞∑
n=1

Jn(k, s) + c.c. =
J(k, s)

1− J(k, s)
+ lim

N→∞

JN(k, s)

J(k, s)− 1
+ c.c. (S12)

The second term is proportional to the dirac delta function that accounts for the divergence of ĝ(k)

at k = 0 because its fourier transform is a constant

1

2π

∫ ∞
−∞

dk
(
e−ikx + eikx

)
lim
N→∞

JN(k, s)

J(k, s)− 1
= −2πiRes[f(z), z = 0] = 2πρB. (S13)

with the auxiliary function f(z) = limN→∞
JN (z,s)
J(z,s)−1

eizx and f(z) = limN→∞
JN (z,s)
J(z,s)−1

e−izx (see

Fig S1 for an explanation of the contour integral). The nontrival portion of ρB ĝ(k) thus corre-

sponds to the fourier transform of ρBh(x) = ρB[g(x)− 1]

ρBĥ(k) =
J(k, s)

1− J(k, s)
+ c.c. (S14)

The usual pair direct correlation function of a bulk system can be expressed in the Fourier space

as

ρB ĉ(k) =
ρBĥ(k)

1 + ρBĥ(k)
=
J(k, s) + J(−k, s)− 2J(k, s)J(−k, s)

1− J(k, s)J(−k, s)
(S15)

The expression for ĉ(k) agrees with the Percus’ solution[2].
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