Effects of Sodium Cationization vs. Protonation on the Conformations and N-Glycosidic

Bond Stabilities of Sodium Cationized Uridine and 2'-Deoxyuridine:

Solution Conformation of [Urd+Na]⁺ is Preserved Upon ESI

Y. Zhu[†], H. A. Roy[†], N. A. Cunningham[†], S. F. Strobehn[†], J. Gao[‡], M. U. Munshi[‡], G. Berden[‡], J. Oomens[‡], and M. T. Rodgers^{†, *}

[†]Department of Chemistry, Wayne State University, Detroit, MI, 48202 [‡]Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands

m/z	Symbol	$[Urd+H]^+$	$[dUrd+H]^+$	$[Urd+Na]^+$	$[dUrd+Na]^+$
267.0	•	—	_	$[Urd+Na]^+$	_
251.0	•	_	_	_	$\left[dUrd + Na \right]^+$
245.0	•	$[Urd+H]^+$	_	_	_
229.0	•	_	$[dUrd+H]^+$	_	_
227.0	•	$[Urd-W+H]^+$	_	_	_
211.0	•	_	$[dUrd-W+H]^+$	_	_
203.0	•	$[Urd-K+H]^+$	_	_	_
193.0	•	_	$[dUrd-2W+H]^+$	_	_
185.0	٠	$[Urd-K-W+H]^+$	_	_	_
155.0	•	_	_	$\left[\text{Urd}-\text{Ura}+\text{Na} ight]^+$	_
139.0	•	_	_	_	[dUrd–Ura+Na] ⁺
135.0	•	_	_	[Ura+Na] ⁺	$[Ura+Na]^+$
131.0	•	_	$[Ura+W+H]^+$	_	_
117.0	•	_	$[dUrd-Ura+H]^+$	_	_
113.0	•	$[Ura+H]^+$	$[Ura+H]^+$	_	_
99.0	٠	_	[dUrd–Ura–W+H] ⁺	_	_
81.0	•	_	$[dUrd-Ura-2W+H]^+$	_	_

Table S1. Mass List of Protonated and Sodium Cationized Urd and dUrd

	B3LYP		MP2(full)	
$[Urd+Na]^+$	6-311+G(2d,2p)	def2-TZVPPD	6-311+G(2d,2p)	def2-TZVPPD
T1(O2O4'O5')	0.0	0.0	0.0	0.0
B1(O2O2')	6.1	4.5	9.5	9.6
T1(O2O4'O5')•W	1.6	3.1	0.0	0.0
B1(O2O2')•W	0.0	0.0	4.1	4.1
T1(0204'05')•2W	3.9	13.4	1.2	0.0
B1(O2O2')•2W	0.0	0.0	0.0	0.0

Table S2. Relative Gibbs Free Energies of the B3LYP/6-311+G(d,p) Optimized Structures of the T1(O2O4'O5') and B1(O2O2') Conformers of $[Urd+Na]^+$ and Their Water Adducts ($[Urd+Na]^+ \cdot nW, n=1, 2$) Calculated Using Different Computational Approaches.^{α}

^{α}All values are given in kJ/mol.

Table S3. Relative Gibbs Free Energies of the B3LYP/6-311+G(d,p) Optimized Structures of the T1, T2, T3 and T4(O2O4'O5') Conformers of $[dUrd+Na]^+$ Calculated Using Different Computational Approaches.^{α}

	B3LYP		MP2(full)	
$\left[dUrd + Na \right]^+$	6-311+G(2d,2p)	def2-TZVPPD	6-311+G(2d,2p)	def2-TZVPPD
T1(O2O4'O5')	0.0	0.0	0.0	0.0
T2(O2O4'O5')	3.5	3.3	2.9	3.7
T3(O2O4'O5')	5.5	5.0	1.5	1.9
T4(O2O4'O5')	7.5	7.2	6.1	4.9

^{α}All values are given in kJ/mol.

Figure Captions

Figure S1. Designations for nucleobase orientation and pseudorotation phase angle (P) of nucleosides. The pseudorotation phase angle, P, is calculated using eq (S1). E and T forms alternate every 18°.

$$\tan P = \frac{(v_4 + v_1) - (v_3 + v_0)}{2 \times v_2 \times (\sin 36^\circ + \sin 72^\circ)}$$
(S1)

The angles, v_0 , v_1 , v_2 , v_3 and v_4 , represent the \angle C4'O4'C1'C2', \angle O4'C1'C2'C3', \angle C1'C2'C3'C4', \angle C2'C3'C4'O4' and \angle C3'C4'O4'C1', respectively. In the upper section of the diagram, $v_2 > 0$, whereas in the lower section of the diagram, $v_2 < 0$. The combination of *P* and v_2 are used to identify the sugar puckering. If $v_2 > 0$, P = P; if $v_2 < 0$ $P \rightarrow P+180^\circ$.

Figure S2. The mass spectra of MS^3 experiments of $[dUrd-W+H]^+$, $[dUrd-2W+H]^+$, $[dUrd-Ura+H]^+$ and $[Urd-K+H]^+$.

Figure S3. Stable low-energy conformers of $[Urd+Na]^+$. The Na⁺ binding modes, orientations of uracil, sugar puckering, and the relative 298 K Gibbs free energies at the B3LYP/6-311+G(2d,2p)//B3LYP/6-311+G(d,p) level of theory are also listed for each structure.

Figure S4. Stable low-energy conformers of $[dUrd+Na]^+$. The Na⁺ binding modes, orientations of uracil, sugar puckering, and the relative 298 K Gibbs free energies at the B3LYP/6-311+G(2d,2p)//B3LYP/6-311+G(d,p) level of theory are also listed for each structure.

Figure S5. Comparison of the experimental IRMPD action spectrum of $[Urd+Na]^+$ with the B3LYP/6-311+G(d,p) optimized structures and calculated linear IR spectra for *syn* oriented O2 binding conformers with spectral misalignments shaded in red. The B3LYP/6-311+G(2d,2p) relative Gibbs free energies at 298 K is also shown.

Figure S6. Comparison of the experimental IRMPD action spectrum of $[Urd+Na]^+$ with the B3LYP/6-311+G(d,p) optimized structures and calculated linear IR spectra for *anti* oriented O2 binding conformers with spectral misalignments shaded in red. The B3LYP/6-311+G(2d,2p) relative Gibbs free energies at 298 K is also shown.

Figure S7. Comparison of the experimental IRMPD action spectrum of $[Urd+Na]^+$ with the B3LYP/6-311+G(d,p) optimized structures and calculated linear IR spectra for O4 binding conformers with spectral misalignments shaded in red. The B3LYP/6-311+G(2d,2p) relative Gibbs free energies at 298 K is also shown.

Figure S8. Comparison of the experimental IRMPD action spectrum of $[Urd+Na]^+$ with the B3LYP/6-311+G(d,p) optimized structures and calculated linear IR spectra for sugar binding conformers with spectral misalignments shaded in red. The B3LYP/6-311+G(2d,2p) relative Gibbs free energies at 298 K is also shown.

Figure S9. Comparison of the experimental IRMPD action spectrum of $[Urd+Na]^+$ with the B3LYP/6-311+G(d,p) optimized structures and calculated linear IR spectra for tautomeric conformers with spectral misalignments shaded in red. The B3LYP/6-311+G(2d,2p) relative Gibbs free energies at 298 K is also shown.

Figure S10. Comparison of the experimental IRMPD action spectrum of $[dUrd+Na]^+$ with the B3LYP/6-311+G(d,p) optimized structures and calculated linear IR spectra for T(O2O4'O5') conformers with spectral misalignments shaded in red. The B3LYP/6-311+G(2d,2p) relative Gibbs free energies at 298 K is also shown.

Figure S11. Comparison of the experimental IRMPD action spectrum of $[dUrd+Na]^+$ with the B3LYP/6-311+G(d,p) optimized structures and calculated linear IR spectra for bidentate and monodentate O2 binding conformers with spectral misalignments shaded in red. The B3LYP/6-311+G(2d,2p) relative Gibbs free energies at 298 K is also shown.

Figure S12. Comparison of the experimental IRMPD action spectrum of $[dUrd+Na]^+$ with the B3LYP/6-311+G(d,p) optimized structures and calculated linear IR spectra for O4 binding conformers with spectral misalignments shaded in red. The B3LYP/6-311+G(2d,2p) relative Gibbs free energies at 298 K is also shown.

Figure S13. Comparison of the experimental IRMPD action spectrum of $[dUrd+Na]^+$ with the B3LYP/6-311+G(d,p) optimized structures and calculated linear IR spectra for sugar binding conformers with spectral misalignments shaded in red. The B3LYP/6-311+G(2d,2p) relative Gibbs free energies at 298 K is also shown.

Figure S14. Comparison of the experimental IRMPD action spectrum of $[dUrd+Na]^+$ with the B3LYP/6-311+G(d,p) optimized structures and calculated linear IR spectra for tautomeric conformers with spectral misalignments shaded in red. The B3LYP/6-311+G(2d,2p) relative Gibbs free energies at 298 K is also shown.

^{S6} Figure S1.

anti orientation ∠C2N1C1′O4′ = 90° to 270°

syn orientation ∠C2N1C1′O4′ = -90° to 90°

^{s7} Figure S2.

s8 Figure S3.

B1(O2O2') anti, C4'-exo (₄T^o) 6.1 kJ/mol

T6(O2O4'O5') *syn,* O4'-endo (^OT₄) 9.1 kJ/mol

T1(O2O4'O5')t4 *syn,* O4'-endo (^oT₄) 16.6 kJ/mol

B6(O2O2') anti, C4'-endo (⁴T₃) 18.6 kJ/mol (

B1(O2'O3') anti, O4'-endo (^OT₄) 22.9 kJ/mol

syn, O4'-endo (^oT₁) 2.8 kJ/mol

T5(O2O4'O5') syn, C3'-endo (³T₂) 8.5 kJ/mol

T8(O2O4'O5') syn, C2'-exo (₂T³) 11.7 kJ/mol

B5(O2O2') anti, C4'-endo (⁴T₃) 18.5 kJ/mol

T3(O2O4'O5')t4 *syn,* O4'-endo (^OT₁) 21.8 kJ/mol

T2(O2O4'O5') syn, O4'-endo (^OT₁) 1.4 kJ/mol

T4(O2O4'O5') syn, C2'-endo (²T₁) 8.0 kJ/mol

T7(O2O4'O5') syn, C1'-exo (₁T^o) 10.2 kJ/mol

T1(O2O2'O3') anti, C2'-endo (²T₁) 18.2 kJ/mol

B7(O2O2') anti, C4'-exo (₄T^o) 20.5 kJ/mol

syn, O4'-endo (^OT₁) 19.0 kJ/mol

^{S9} Figure S3.

M1(O4) anti, C3'-endo (³T₂) 27.4 kJ/mol

B1(O3'O5') *syn,* C3'-endo (³T₄) 29.4 kJ/mol

B3(O2O4') *syn,* C3'-exo (₃T²) 32.9 kJ/mol

T9(O2O4'O5') syn, C3'-endo (³T₂) 34.6 kJ/mol

M6(O4) anti, C3'-exo (₃T⁴) 37.5 kJ/mol

T2(O2O2'O3') anti, C1'-exo (₁T²) 26.9 kJ/mol

T5(O2O4'O5')t4 *syn,* C3'-endo (³T₂) 29.0 kJ/mol

B2(O2O4') syn, C3'-exo (₃T²) 32.8 kJ/mol

B1(O2O5') *syn,* C2'-endo (²T₁) 34.5 kJ/mol

M5(O4) anti, C1'-exo (₁T²) 36.8 kJ/mol

M4(O4) anti, C2'-endo (²T₃) 34.3 kJ/mol

B4(O2O4') syn, C2'-exo (₂T³) 35.1 kJ/mol

T4(O2O4'O5')t4 syn, C2'-endo (²T₁) 25.9 kJ/mol

B2(O2'O3') anti, C3'-exo (₃T²) 28.5 kJ/mol

B1(O2O4') syn, C3'-exo (₃T²) 30.9 kJ/mol

B2(O3'O5') anti, O4'-endo (^OT₄) 33.5 kJ/mol

B3(O2'O3') anti, O4'-endo (^OT₄) 34.7 kJ/mol

s10 Figure S3.

syn, C4'-exo (₄T³) 39.5 kJ/mol

M9(O4) syn, C2'-endo (²T₃) 40.9 kJ/mol

B7(O2O4') syn, C3'-endo (³T₂) 42.4 kJ/mol

B5(O2'O3') anti, C3'-exo (₃T⁴) 43.0 kJ/mol

M13(O4) anti, C2'-endo (²T₃) 44.3 kJ/mol

M7(O4) anti, C3'-exo (₃T⁴) 39.2 kJ/mol

B6(O2O4') syn, C2'-endo (²T₃) 40.0 kJ/mol

M10(O4) syn, C2'-endo (²T₁) 42.1 kJ/mol

B4(O2'O3') anti, O4'-endo (^OT₄) 42.8 kJ/mol

B8(O2O4') syn, C3'-exo (₃T²) 43.7 kJ/mol

T3(O2O2'O3') anti, C1'-exo (₁T²) 38.3 kJ/mol

B5(O2O4') syn, C2'-endo (²T₃) 39.9 kJ/mol

B2(O2N3)t4 anti, C3'-exo (₃T²) 41.6 kJ/mol

B3(O2N3)t4 anti, C3'-endo (³T₂) 42.7 kJ/mol

B4(O2N3)t4 anti, C3'-exo (₃T²) 43.6 kJ/mol

B1(O2N3)t4 anti, C2'-endo (²T₃) 37.6 kJ/mol

T6(O2O4'O5')t4 syn, O4'-endo (^OT₁) 39.8 kJ/mol

T7(O2O4'O5')t4 syn, C3'-endo (³T₂) 41.5 kJ/mol

M11(O4) syn, C2'-endo (²T₃) 42.5 kJ/mol

s11 Figure S3.

M15(O4) anti, C4'-exo (₄T³) 46.1 kJ/mol

B6(O2N3)t4 anti, C1'-exo (₁T²) 48.1 kJ/mol

B7(O2N3)t4 anti, C3'-endo (³T₄) 49.7 kJ/mol

B8(O2N3)t4 syn, C2'-endo (²T₁) 53.3 kJ/mol

M20(O4) anti, C3'-endo (³T₄) 55.6 kJ/mol

B6(O2'O3') syn, C4'-exo (₄T³) 45.8 kJ/mol

M16(O4) anti, C3'-exo (₃T²) 47.6 kJ/mol

M18(O4) anti, C3'-endo (³T₄) 49.6 kJ/mol

B9(O2O4') syn, C3'-exo (₃T²) 52.7 kJ/mol

B10(O2N3)t4 anti, C3'-exo (₃T²) 54.5 kJ/mol

M14(O4) syn, C4'-exo (₄T³) 45.2 kJ/mol

B7(O2'O3') anti, C3'-exo (₃T⁴) 46.5 kJ/mol

B1(N3O4)t2 anti, C2'-endo (²T₃) 49.4 kJ/mol

B1(O2O2')t4 anti, C3'-exo (₃T⁴) 50.8 kJ/mol

B2(N3O4)t2 syn, C2'-endo (²T₁) 53.9 kJ/mol

B1(O2O5')t4 syn, C2'-endo (²T₃) 44.8 kJ/mol

B5(O2N3)t4 anti, C2'-endo (²T₃) 46.5 kJ/mol

M17(O4) syn, C2'-endo (²T₃) 48.7 kJ/mol

M19(O4) syn, C2'-endo (²T₃) 50.3 kJ/mol

B9(O2N3)t4 anti, C1'-exo (₁T²) 53.9 kJ/mol

^{S12} Figure S3.

B13(O2N3)t4 syn, C4'-exo (₄T^o) 56.6 kJ/mol

B8(O2'O3') syn, C4'-exo (₄T³) 59.0 kJ/mol

B17(O2N3)t4 anti, C2'-endo (²T₁) 62.3 kJ/mol

B9(O2'O3') syn, C4'-exo (₄T³) 64.7 kJ/mol

B14(O2N3) syn, C2'-endo (²T₃) 66.1 kJ/mol

B12(O2N3)t4 syn, C4'-exo (₄T³) 56.5 kJ/mol

B15(O2N3)t4 anti, C3'-exo (₃T²) 58.0 kJ/mol

B1(O4'O5') anti, C4'-exo (₄T³) 62.1 kJ/mol

B18(O2N3)t4 anti, C3'-exo (₃T²) 64.6 kJ/mol

B10(O2'O3') syn, C4'-exo (₄T³) 65.8 kJ/mol

B11(O2N3)t4 anti, C4'-exo (₄T³) 56.3 kJ/mol

B14(O2N3)t4 anti, C4'-exo (₄T³) 56.9 kJ/mol

B10(O2O4') syn, C2'-exo (₂T¹) 61.2 kJ/mol

B11(O2O4') syn, C1'-exo (₁T²) 64.3 kJ/mol

B12(O2O4') syn, C2'-endo (²T₃) 65.6 kJ/mol

B3(N3O4)t2 anti, C1'-exo (₁T²) 56.3 kJ/mol

M21(O4) anti, C2'-endo (²T₁) 56.8 kJ/mol

B16(O2N3)t4 anti, C2'-endo (²T₃) 59.2 kJ/mol

B4(N3O4)t2 anti, C3'-endo (³T₄) 63.1 kJ/mol

B5(N3O4)t2 syn, C1'-exo (₁T²) 64.9 kJ/mol

s13 Figure S3.

B9(N3O4)t2 anti, C1'-exo (₁T²) 68.6 kJ/mol

B19(O2N3)t4 *anti,* C3'-endo (³T₄) 72.0 kJ/mol

B1(O3'O4') anti, C4'-endo (⁴T₃) 75.5 kJ/mol

B2(O2O3') anti, C2'-exo (₂T³) 76.7 kJ/mol

B1(O4O5') *syn,* C1'-endo (¹T_o) 79.4 kJ/mol

B12(N3O4)t2 anti, C4'-exo (₄T³) 71.5 kJ/mol

B12(O2'O3') anti, C2'-exo (₂T¹) 74.7 kJ/mol

B2(O3'O4') anti, C4'-endo (⁴T₃) 76.6 kJ/mol

M1(O4)t2 syn, C4'-exo (₄T³) 79.3 kJ/mol

67.9 kJ/mol

B11(N3O4)t2 syn, C2'-endo (²T₃) 70.8 kJ/mol

B11(O2'O3') *syn,* C3'-exo (₃T²) 74.6 kJ/mol

B1(O2O3') anti, C3'-endo (³T₄) 76.1 kJ/mol

B16(N3O4)t2 anti, C3'-endo (³T₂) 79.2 kJ/mol

B6(N3O4)t2 anti, C3'-exo (₃T²) 66.9 kJ/mol

B10(N3O4)t2 syn, C2'-endo (²T₃) 70.0 kJ/mol

B13(N3O4)t2 syn, C1'-exo (₁T^o) 73.4 kJ/mol

B14(N3O4)t2 anti, C2'-endo (²T₁) 75.9 kJ/mol

B15(N3O4)t2 anti, C2'-endo (²T₃) 77.7 kJ/mol

^{S14} Figure S3.

B17(N3O4)t2 syn, C4'-exo (₄T^o) 86.3 kJ/mol

B1(O2'O4')

syn, C1'-endo (¹T₂)

85.1 kJ/mol

M2(O5')

anti, C4'-exo (4TO)

87.8 kJ/mol

T1(O2N3O5')t4

syn, C1'-endo (¹T₂)

90.8 kJ/mol

B2(O4O5')

syn, C4'-endo (4T₃)

92.6 kJ/mol

B3(O3'O4') *syn,* C3'-exo (₃T⁴) 87.9 kJ/mol

M6(O4)t2 syn, C2'-endo (²T₁) 91.6 kJ/mol

M7(O4)t2 *syn,* C2'-endo (²T₁) 93.4 kJ/mol

M1(O5') syn, C4'-exo (₄T³) 80.7 kJ/mol

M4(O4)t2 anti, C3'-exo (₃T⁴) 87.1 kJ/mol

B4(O3'O4') syn, C3'-exo (₃T⁴) 90.1 kJ/mol

M1(O2') *syn,* C4'-exo (₄T^o) 92.4 kJ/mol

B3(O2O3') anti, C3'-endo (³T₄) 99.0 kJ/mol

M2(O4)t2 syn, C2'-endo (²T₁) 80.1 kJ/mol

M3(O4)t2 syn, C2'-endo (²T₁) 86.8 kJ/mol

M5(O4)t2 anti, C3'-exo (₃T⁴) 88.8 kJ/mol

M8(O4)t2 syn, C4'-exo (₄T^o) 93.5 kJ/mol

s15 Figure S4.

T1(O2O4'O5') syn, O4'-endo (^OT₁) 0.0 kJ/mol

T5(O2O4'O5') *syn,* O4'-endo (^OT₄) 8.4 kJ/mol

T9(O2O4'O5') *syn,* C2'-endo (²T₁) 22.0 kJ/mol

T10(O2O4'O5') syn, C3'-endo (³T₂) 29.3 kJ/mol

B1(O2O5') syn, C2'-endo (²T₁) 35.1 kJ/mol

T2(O2O4'O5') syn, C1'-exo (₁T^o) 3.5 kJ/mol

T6(O2O4'O5') syn, O4'-endo (^OT₄) 8.5 kJ/mol

T1(O2O4'O5')t4 syn, O4'-endo (^OT₁) 23.0 kJ/mol

M1(O4) anti, C3'-endo (³T₂) 29.5 kJ/mol

B2(O2O5') syn, C2'-endo (²T₁) 36.1 kJ/mol

T3(O2O4'O5') syn, C2'-exo (₂T³) 5.5 kJ/mol

T7(O2O4'O5') syn, C2'-endo (²T₁) 10.4 kJ/mol

T2(O2O4'O5')t4 syn, C2'-exo (₂T³) 25.1 kJ/mol

M2(O4) anti, C2'-endo (²T₃) 30.1 kJ/mol

B2(O2O4') syn, C3'-exo (₃T²) 36.6 kJ/mol

T4(O2O4'O5') syn, C2'-endo (²T₁) 7.5 kJ/mol

T8(O2O4'O5') *syn,* O4'-endo (^OT₁) 14.0 kJ/mol

B1(O2O4') syn, C3'-exo (₃T²) 28.7 kJ/mol

M3(O4) anti, C3'-endo (³T₂) 33.5 kJ/mol

M4(O4) anti, C2'-endo (²T₃) 36.8 kJ/mol

^{S16} Figure S4.

M7(O4) anti, C3'-exo (₃T⁴) 39.5 kJ/mol

M11(O4) anti, C2'-endo (²T₁) 41.4 kJ/mol

M12(O4) anti, C4'-exo (₄T³) 44.4 kJ/mol

M16(O4) anti, C3'-endo (³T₄) 46.1 kJ/mol

B2(O2N3)t4 anti, C2'-endo (²T₃) 48.3 kJ/mol

M6(O4) anti, C2'-endo (²T₁) 39.4 kJ/mol

M10(O4) anti, C3'-exo (₃T²) 41.3 kJ/mol

B2(O3'O5') syn, C3'-endo (³T₂) 44.2 kJ/mol

M15(O4) anti, C3'-endo (³T₄) 46.0 kJ/mol

M18(O4) anti, C3'-exo (₃T⁴) 47.6 kJ/mol

M5(O4) anti, C3'-endo (³T₄) 39.3 kJ/mol

M9(O4) anti, C2'-endo (²T₁) 41.2 kJ/mol

B3(O2O4') syn, C2'-exo (₂T³) 43.7 kJ/mol

M14(O4) syn, C2'-endo (²T₃) 45.8 kJ/mol

B1(O2O4')t4 syn, C3'-exo (₃T²) 47.1 kJ/mol

B1(O2N3)t4 anti, C2'-endo (²T₃) 39.2 kJ/mol

M8(O4) anti, C3'-exo (₃T⁴) 40.6 kJ/mol

B1(O3'O5') syn, C3'-endo (³T₂) 43.5 kJ/mol

M13(O4) syn, C2'-endo (²T₁) 45.2 kJ/mol

M17(O4) syn, C4'-exo (₄T³) 46.2 kJ/mol

s17 Figure S4.

anti, O4'-endo (^oT₄) 49.0 kJ/mol

M21(O4) syn, C4'-exo (₄T³) 50.3 kJ/mol

B2(O2O3') anti, C1'-exo (₁T²) 51.9 kJ/mol

T1(O2N3O5')t4 *syn,* C3'-exo (₃T²) 55.8 kJ/mol

B2(O3'O5') syn, C3'-endo (³T₂) 57.8 kJ/mol

M19(O4) syn, C2'-endo (²T₃) 48.9 kJ/mol

B1(O2O3') anti, C2'-endo (²T₁) 49.9 kJ/mol

M23(O4) anti, C3'-endo (³T₄) 51.8 kJ/mol

B4(O2O4') syn, C3'-endo (³T₂) 55.6 kJ/mol

B7(O2N3)t4 anti, C3'-exo (₃T⁴) 57.6 kJ/mol

B4(O2N3)t4 anti, C2'-endo (²T₁) 48.6 kJ/mol

anti, C2'-endo (²T₃) 49.7 kJ/mol

B5(O2N3)t4 anti, C3'-exo (₃T⁴) 51.4 kJ/mol

B6(O2N3)t4 anti, C3'-exo (₃T²) 52.7 kJ/mol

M3(O2) anti, C3'-endo (³T₄) 56.6 kJ/mol

B3(O2N3)t4 anti, C2'-endo (²T₁) 48.5 kJ/mol

M20(O4) syn, C4'-exo (₄T³) 49.5 kJ/mol

M22(O4) anti, C3'-endo (³T₄) 51.1 kJ/mol

M24(O4) syn, C2'-endo (²T₃) 52.3 kJ/mol

S18 Figure S4.

B7(O2O4') *syn,* C1'-exo (₁T²) 59.7 kJ/mol

B3(O2O3') anti, C1'-exo (₁T²) 63.0 kJ/mol

B9(O2N3)t4 anti, C3'-endo (³T₄) 65.0 kJ/mol

M6(O2) anti, C3'-exo (₃T²) 67.6 kJ/mol

B3(N3O4)t2 syn, C2'-endo (²E) 70.4 kJ/mol

B8(O2N3)t4 syn, C2'-endo (²T₁) 59.6 kJ/mol

B3(O3'O5') anti, C4'-exo (₄T³) 62.4 kJ/mol

B4(O2O3') anti, C1'-exo (₁T²) 64.2 kJ/mol

B10(O2N3)t4 syn, C2'-endo (²T₃) 66.6 kJ/mol

B11(O2N3)t4 syn, C4'-exo (₄T³) 70.1 kJ/mol

B6(O2O4') syn, O4'-endo (^OT₁) 58.9 kJ/mol

B2(O2O4')t4 syn, C2'-exo (₂T³) 60.9 kJ/mol

M4(O2) anti, C3'-endo (³T₄) 63.9 kJ/mol

B2(O4'O5') anti, C4'-exo (₄T³) 66.1 kJ/mol

B2(N3O4)t2 syn, C2'-endo (²T₁) 69.9 kJ/mol

B5(O2O4') syn, C3'-exo (₃T²) 58.4 kJ/mol

B1(O4'O5') anti, C4'-exo (₄T³) 60.6 kJ/mol

B1(N3O4)t2 syn, C2'-endo (²T₃) 63.8 kJ/mol

M5(O2) anti, C3'-endo (³T₂) 65.3 kJ/mol

^{S19} Figure S4.

B6(N3O4)t2 anti, C2'-endo (²T₃) 76.6 kJ/mol

B1(O4O5') syn, C2'-exo (₂T³) 79.0 kJ/mol

B4(O2O4')t4 syn, C2'-exo (₂T³) 82.7 kJ/mol

B10(N3O4)t2 syn, O4'-endo (^OT₄) 86.4 kJ/mol

M2(O4)t2 syn, C4'-exo (₄T^o) 91.3 kJ/mol

B8(O2O4') syn, O4'-endo (^OT₄) 75.9 kJ/mol

B9(N3O4)t2 syn, C1'-exo (₁T²) 78.9 kJ/mol

M1(O4)t2 anti, C4'-exo (₄T³) 82.2 kJ/mol

T2(O2N3O5')t4 syn, C1'-endo (¹T₂) 86.0 kJ/mol

M2(O5') syn, C3'-endo (³T₂) 89.7 kJ/mol

B5(N3O4)t2 anti, C2'-endo (²T₃) 72.5 kJ/mol

B8(N3O4)t2 syn, C3'-endo (³T₄) 77.6 kJ/mol

M1(O5') syn, C3'-endo (³T₂) 81.8 kJ/mol

B1(O2O3')t4 anti, C1'-exo (₁T²) 85.1 kJ/mol

M1(O3') syn, C4'-exo (₄T³) 88.3 kJ/mol

B4(N3O4)t2 anti, C2'-endo (²T₁) 72.3 kJ/mol

B7(N3O4)t2 anti, C3'-exo (₃T²) 77.5 kJ/mol

B4(O3'O5') anti, C4'-exo (₄T³) 80.9 kJ/mol

M7(O2) anti, C3'-endo (³T₄) 83.7 kJ/mol

B5(O2O3') anti, C3'-endo (³T₂) 88.1 kJ/mol

^{S20} Figure S4.

syn, C3'-exo (₃T⁴) 93.5 kJ/mol

M3(O5') anti, C4'-exo (₄T^o) 93.0 kJ/mol

M4(O5') anti, C4'-exo (₄T^o) 99.8 kJ/mol

B11(N3O4)t2 anti, C3'-endo (³T₄) 92.3 kJ/mol

B5(O2O4')t4 syn, C3'-endo (³T₂) 95.2 kJ/mol

^{S21} Figure S5.

s22 Figure S6.

^{S24} Figure S8.

^{S26} Figure S10.

^{S27} Figure S11.

^{S28} Figure S12.

^{S29} Figure S13.

s30 Figure S14.

