## Fermi Resonance as a Means to Determine the Hydrogen-Bonding Status of Two Infrared Probes

Jeffrey M. Rodgers, Rachel M. Abaskharon, Bei Ding, Jianxin Chen, Wenkai Zhang\*, Feng Gai\*

## **Supporting Information**



**Figure S1.** Normalized FTIR spectra of CP in the carbonyl stretching frequency region obtained in different solvents, as indicated.



**Figure S2.** 2D IR spectrum of the carbonyl stretching mode of CP in isopropanol at T = 250 fs. The appearance of off-diagonal peaks at this waiting time is indicative of coupled modes and supports the assignment of Fermi resonance.



**Figure S3.** Normalized FTIR spectra of 4-CI in the nitrile stretching frequency region obtained in different solvents, as indicated.



**Figure S4.** Dependence of the Fermi resonance coupling strength W for 4-CI on the dielectric constant  $\varepsilon$  of the aprotic solvents used in the current study.



**Figure S5.** Normalized FTIR spectra of 4-CI in low frequency region obtained in dichloromethane and cyclopentanone, as indicated.



**Figure S6.** Normalized FTIR spectra of 4-CI in methanol (MeOH) and ND-4-CI in deuterated methanol (MeOD), as indicated. The shoulders in the ND-4-CI spectrum likely arise from 4-CI, due to incomplete H/D exchange.