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1. Thermal Diode Fabrication and Characterization:

Table S1. Formulations and properties of high internal phase emulsion foam

Run Oil:Water (v/v) Porosity (%) a Density (g/cm3) a

1 1:5 85.4 0.154
2 1:6 87.0 0.136
3 1:7 88.0 0.126
4 1:9 90.0 0.105
5 1:10 90.7 0.098

a Density was obtained by measuring volume and weight at room temperature, and porosity was calculated by 
assuming skeleton’s density was same as polystyrene’s density, 1.05 g/cm3.

Table S2. Transition temperatures of PFH with varying porosities and paraffins.
Porosity (%) 85.37a 87.05a 88.02a 90.03a 90.71a 90.71b 90.71c

Melting point (℃)d 30.3 32.1 31.1 30.8 30.4 20.8 40.0

Freezing point (℃)d 26.2 24.5 25.6 26.7 25.9 15.0 32.2

Transition point (℃)e 28.2 28.3 28.4 28.8 28.2 17.9 36.1

a PFH-O. b PFH-H. c PFH-E. d Determined by DSC. e Average of melting point and freezing point.

Table S3. Thermal conductivity of PFH and the calculated thickness ratio of PMMA and PFH.

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics.
This journal is © the Owner Societies 2017

mailto:strano@mit.edu


a Transition point, 28.2 ºC for PFH-O, 17.9 ºC for PFH-H and 36.1 ºC for PFH-E as obtained by DSC. b According 
to the analytical model from Cottrill and Strano, LB is thickness of PFH, LA is thickness of PMMA. 

, where we set LA = 1.6 mm.

𝐿𝐵

𝐿𝐴
=

𝑘𝐵1𝑘𝐵2

𝑘𝐴

Fig. S1: a) Thermal rectifications obtained via analytical model and heat flux measurements for a thermal diode 

made of PFH-H with varying temperature differences; upper thermoelectric heater was maintianed at 40 ºC. b) 
Thermal rectifications obtained via analytical model and heat flux mesurements for a thermal diode made of PFH-

E with varying temperature differences; upper thermoelectric heater was maintained at 60 ºC.

2. Modeling the Thermal Diode Bridge:

The 1-D energy conservation equation for a temperature dependent thermal conductivity and a 
temperature independent heat capacity is shown in eqn (S1) for the phase change material (PCM) 
(material B). This conservation equation accounts for the change in thermal conductivity in response to 
the phase change.
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where  is the density of material B,  is the heat capacity of material B,  is the spatial and 𝜌𝐵 𝐶𝐵 𝑇𝐵

temporal temperature of material B,  is time,  is the spatial dimension for material B, and  is the 𝑡 𝑥𝐵 𝑘𝐵

thermal conductivity of material B.

Thermal conductivity (W/(m K))
Types

Below T* a Above T* a
LB/LA 

b

PFH-O 0.350 0.167 1.26
PFH-H 0.327 0.170 1.23
PFH-E 0.270 0.160 1.08



For the non-phase change material (material A), the 1-D energy conservation equation assumes 
constant thermal conductivity and constant heat capacity.

                                                                  (S2)
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where  is the spatial and temporal temperature of material A,  is the spatial dimension for 𝑇𝐴 𝑥𝐴

material A, and  is the thermal diffusivity of material A.𝛼𝐴

The thermal conductivity of material B is assumed to undergo a smooth step change in response to the 
phase change, and it is well-represented by an arctan function.

                                           (S3)
𝑘𝐵 = 𝑘𝐵,0(1 +

2𝛽
𝜋

tan ‒ 1 (𝛾(𝑇𝐵 ‒ 𝑇 ∗ )) )

where  is the mean thermal conductivity of the two phases for material B,  is the transition 𝑘𝐵,0 𝑇 ∗

temperature of material B,  is an amplification factor that should be sufficiently large in order to 𝛾

represent the smooth step change in thermal conductivity. We assume  for all simulations. 𝛾 =‒ 5 𝐾 ‒ 1

 is determined by the thermal conductivity of each phase, as described by the following equation for 𝛽
our PFH-O thermal diode.
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where  and  refer to the thermal conductivities of material B below and above the transition 𝑘𝐵1 𝑘𝐵2

point, respectively.

Insertion of eqn (S3) into eqn (S1) yields eqn (S5) for the energy conservation balance for material B.     
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(S5)

It is known that a phase change material operating within proximity to its phase change will have an 
effective heat capacity associated with the phase change.S1 However, the model proposed in eqn (S5) 
assumes a constant heat capacity for material B. This is resolved by maintaining the heat capacity in 
eqn (S5) as being constant and having its value be equal to the effective heat capacity associated with 



the phase change. This is a valid simplification if the temperature fluctuations occur within the melting 
range of the phase change material,S1 which is indeed the case for our system, as will be shown.

The effective heat capacity due to the occurrence of the phase change, is given by eqn (S6) and (S7).

                                                 (S6)
𝐶𝐵 = 𝐶𝐵,𝑒𝑓𝑓 = 𝐶𝐵,0(1 +

𝑠 𝑇𝑎

𝑇𝑚
)

                                                                (S7)
𝑠 =

𝜑ℎ
2𝐶𝐵,0𝑇𝑎

where  is the Stefan number,  is the mass fraction of the phase change material in a PCM composite, 𝑠 𝜑

 is the latent heat per mass,  is the standard heat capacity of material B,  is the half-width of ℎ 𝐶𝐵,0 𝑇𝑚

the melting range for material B, and  is the amplitude of temperature oscillations.𝑇𝑎

At this point, the energy conservation equations for material A and material B have been described. 
For modeling the thermal bridge diode circuit show in Fig. 4c, the conservation equations for material 
A and B must be interfaced and form two systems with different orders of boundary conditions.

The boundary conditions are provided in eqn (S8) and (S9). The oscillating boundary conditions (eqn 
S8) will be applied to the external face of material A for one system and the external face of material 
B for the other system. Thus, the no heat flux conditions (eqn S9) will be applied to the external face 
of material B in one system and the external face of material A in the other system.

                                                      (S8)𝑇𝑖𝑛 = 𝑇0 + 𝑇𝑎𝑠𝑖𝑛⁡(𝜔𝑡)

where  is the median temperature of temperature oscillations and  is the angular frequency of 𝑇0 𝜔

temperature oscillations.

                                                                 (S9)

∂𝑇
∂𝑥

= 0

The initial temperature distribution  throughout the device is assumed to be constant and equal (𝑇00)

to the mean temperature of temperature oscillations .(𝑇0)

This model was solved by discretizing the system in space and solving with the method of lines with 
ode15s in MATLAB (MATLAB code provided, ‘thermal_diode_main’ and “ODE_configure’). The 



parameters used for modeling the thermal diode bridge for our octadecane-based (OD) thermal diode 

interfaced with polycarbonate (PC) are shown in Table S4. As can be seen from the values of ,  𝑇𝑎 𝑇𝑚,

, and , the temperature fluctuations occur within the melting range of the phase change material, 𝑇 ∗ 𝑇0

allowing application of eqn (S6). Experimental support for these values is provided in the following 
section and Fig. S2a.

Table S4: Parameters used for numerically modeling the thermal diode bridge circuit for our 
octadecane-based thermal diode described in section 2, as well as for modeling the system described 

in section 4. References are indicated by brackets.  and 𝑘𝐵2 = 0.17 𝑊 𝑚 ‒ 1 𝐾 ‒ 1

.𝑘𝐵1 = 0.35 𝑊 𝑚 ‒ 1 𝐾 ‒ 1

𝑇𝑎 = 5 ℃
𝑘𝐴 = 0.2

𝑊
𝑚 𝐾
[this work] (PC at RT)

𝛽 = 0.35

𝑇 ∗ = 𝑇0 = 𝑇00 = 27 ℃

[S2] (pure OD)

𝑘𝐵,0 =
𝑘𝐵2 + 𝑘𝐵1

2
= 0.26

𝑊
𝑚 𝐾

[this work] (porosity 90.7%)

𝛾 =‒ 5
1
𝐾

𝑇𝑚 = 5 ℃
[S2] (pure OD)

𝛼𝐴 = 0.144
𝑚𝑚2

𝑠
[this work] (PC at RT)

𝜔 = 0.0785 𝑠 ‒ 1

𝐿𝐴 = 380 𝜇𝑚
𝐶𝐵,0 = 1600

𝐽
𝑘𝑔 𝐾

[S2] (pure OD at RT)

ℎ = 243,000
𝐽

𝑘𝑔
[S2]

𝐿𝐵 = 460 𝜇𝑚
𝜌𝐵 = 0.777

𝑔
𝑚𝐿

[S2] (pure OD at RT)

𝜑 = 1
     (assume pure OD)

3. Experimental Thermal Diode Bridge Details:

The setup described in Fig. 4c and the experimental section of the manuscript was used to probe the 
performance of our octadecane-based thermal diodes in the thermal diode bridge circuit. Details of the 
input temperature oscillations generated by the thermoelectrics wired in parallel are shown in Fig. S2a. 



The slope in Fig. S2b is the Seebeck coefficient for the central thermoelectric in Fig. 4c. 

Fig. S2: a) Temperature oscillation data for the input temperature fluctuations  generated by the (𝑇𝑖𝑛)

potentiostat setup (Fig. 4c and experimental section) at an angular frequency . The 𝜔 = 0.0785 𝑠 ‒ 1

median temperature of temperature oscillations (red) occurs at the phase transition temperature of 

octadecane ). b) Measurement of the Seebeck coefficient for the center, sensory (𝑇 ∗ = 27 ℃

thermoelectric (Fig. 4c and experimental section). Measurements were obtained by varying the 
temperature difference using a temperature controlled stage (EchothermTM chilling/heating dry bath) 
and forced convection (fan) on either side of the thermoelectric. Temperatures and voltages were 
acquired with K-type thermocouples and a multimeter, respectively.
The voltage equation shown in eqn (14) assumes open circuit conditions. The voltage equation shown 
in eqn (S10) assumes closed circuit conditions. As mentioned in the main text, the voltage output data 
from the central thermoelectric in the thermal circuit in Fig. 4c was converted to a temperature 

difference according to eqn (14) by assuming a Seebeck coefficient ) equal to 1.5 mV K-1. It (Γ𝑆

should be noted that, for the closed circuit measurements, the proper equation to apply to this 
conversion is eqn (S10). Eqn (14) is the proper equation to apply for open circuit conditions. 
Therefore, the 1.5 mV K-1 “Seebeck coefficient” used to convert the voltage data to a temperature 
difference for the closed circuit measurements is actually an effective Seebeck coefficient, which is 
scaled by the internal and external electrical resistances in the system. We have included this 
discussion for rigor. 

                                                      (S10)
𝑉 =

Γ𝑆∆𝑇

(1 + 𝑅𝑖𝑛𝑡/𝑅𝑒𝑥𝑡)

where  is the Seebeck coefficient,  is the temperature difference,  is the voltage,  is the Γ𝑆 ∆𝑇 𝑉 𝑅𝑖𝑛𝑡

internal electrical resistance of the thermoelectric, and  is the external electrical resistance in the 𝑅𝑒𝑥𝑡

circuit.S3

We calculated the internal resistance of our central thermoelectric module to be 1.7 Ω. To obtain this 
value, we compared open and closed circuit voltages generated by our thermoelectric under identical 



temperature biases using a 1.6 Ω external resistor. 

4. Analysis of the Effect of Temperature Dependent Heat Capacity:

The experimental data obtained for the thermal diode bridge circuit was compared with an additional 
model in order to investigate the effect of the variable heat capacity associated with the phase change 
on the output of the thermal diode bridge. 

For this model, the energy conservation equations for the materials A and B are given by eqn (S11) 
and (S12), respectively. 

                                                          (S11)
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                                                  (S12)
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Eqn (S12) has been addressed numerically by Richardson and Woods.S1 The nonlinear nature of the 
heat transfer model was addressed by solving numerically using the Crank-Nicolson method with 
variable thermal diffusivity. 

Eqn (S12) then becomes:

                                                         (S13)

∂𝑇𝐵

∂𝑡
= 𝛼𝐵(𝑇)

∂2𝑇𝐵

∂𝑥2
𝐵

We addressed this model numerically (MATLAB code provided, ‘heat_capacity_T’) using the Crank-
Nicolson method, as provided in eqn (S14).

                (S14)

𝑇𝑛 + 1
𝑖 ‒ 𝑇𝑛

𝑖

∆𝑡
=

𝑎

2(∆𝑥)2[(𝑇𝑛 + 1
𝑖 + 1 ‒ 2𝑇𝑛 + 1

𝑖 + 𝑇𝑛 + 1
𝑖 ‒ 1 ) + (𝑇 𝑛

𝑖 + 1 ‒ 2𝑇𝑛
𝑖 + 𝑇 𝑛

𝑖 ‒ 1)]

 refers to space discretization,  refers to time discretization,  is the length of the space discretization, 𝑖 𝑛 ∆𝑥
 is the step in time. ∆𝑡

If in segment A

                                                                  (S15)𝑎 = 𝛼𝐴

 

If in segment B and  or 𝑇 < 𝑇 ∗ ‒ 𝑇𝑚 𝑇 > 𝑇 ∗ + 𝑇𝑚



 

                                                                (S16)
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𝑘𝐵,0

𝜌𝐵𝐶𝐵,0

If in segment B and  𝑇 ∗ ‒ 𝑇𝑚 ≤ 𝑇 ≤ 𝑇 ∗ + 𝑇𝑚

                                                    (S17)
𝑎 = ( 𝑘𝐵,0

𝜌𝐵𝐶𝐵,0
)(1 +

𝑠 𝑇𝑎

𝑇𝑚
) ‒ 1

With small enough step size, we can assume in order to ensure linearity and solve the system 𝑎𝑛
𝑖 = 𝑎𝑛 + 1

𝑖  

of equations.

We use the following boundary conditions for insertion into the scheme above:

                            (no flux)                            (S18)𝑇𝑛
𝑁 = 𝑇 𝑛

𝑁 ‒ 1

where i = N is the grid point at the output of the thermal diode bridge.

                                                     (S19)𝑇𝑛
1 = 𝑇0 + 𝑇𝑎sin (𝜔𝑡𝑛)

where i = 1 is the grid point at the input of the thermal diode bridge.

The initial temperature distribution  throughout the device is assumed to be constant and equal (𝑇00)

to the mean temperature of temperature oscillations .(𝑇0)

The model in eqn (S11) to (S19) was analyzed with the parameters in Table S4 to determine whether 
the independent effect of the change in heat capacity - due to the phase change – could result in 
rectification of the oscillatory temperature input. Two analyses were performed: 1) varying the 

temperature oscillation amplitude for a given transition temperature ) 2) varying the (𝑇 ∗ = 27 ℃

transition temperature for a fixed temperature oscillation amplitude ). These conditions were (𝑇𝑎 = 5 ℃

chosen such that the variable thermal diffusivity would be activated (i.e., temperatures outside and 
within the melting range are accessed) and such that the symmetry between the median oscillation 
temperature and phase transition temperature were broken. The results of these analyses are shown in 
Fig. S3a and S3b, respectively.



The results in Fig. S3a show that the increase in temperature amplitude has no effect on the thermal 
circuit’s ability to rectify, which is shown by the double polarity temperature difference that 
symmetrically oscillates around a value of zero. The sole effect of the increase in temperature amplitude 
is to introduce additional kinks in the temperature difference profile, which are related to the different 
time scales for standard thermal diffusion and phase change front movement.

The results in Fig. S3b show that slight rectification is possible by breaking the symmetry between the 

median temperature of oscillations and the phase transition temperature (i.e., ). These 𝑇0 ≠ 𝑇 ∗

constraints also introduce kinks into the temperature difference profiles, which are similar to those 
observed in Fig. S3a. The model discussed in the manuscript and section 2 accurately accounts for the 
unsteady thermal rectification of our thermal diode bridge circuit for a variety of reasons. First, kinks 
are not observed in our experimental temperature difference profiles. Second, as shown in Fig. S2a, our 
experimental temperature input matches very well with our model inputs in section 2. For example, the 
median temperature of oscillations is essentially the transition temperature for our phase change 
material, octadecane. At any rate, the results of Fig. S3b clearly indicate that rectification can be 

achieved by breaking the symmetry between  and  The researchers do not believe this is the 𝑇0 𝑇 ∗ .

mechanism for the experimental output shown in Fig. 4d; however, the data of Fig. S3b provide insight 
for further development of the thermal diode bridge circuit.

Figure S3: An analysis of the effect of temperature oscillation amplitude (a) and phase transition 
temperature (b) on the output of a thermal diode bridge modeled by eqn (S11) to (S19). All parameters 
used for the simulations are in Table S4, unless otherwise indicated.

5. FFT Analyses of the Thermal Diode Bridge Circuit:

The Fast Fourier Transforms (FFTs) for our thermal diode bridge circuit experimental outputs (Fig. 4d, 
red and blue) are shown in Fig. S4a (open circuit) and S4b (closed circuit). As mentioned in the 
manuscript, the outputs (Fig. 4d) are characterized by dynamic thermal rectification. Of note is that the 
FFTs for these experimental outputs are characterized by a standard harmonic series. Furthermore, the 
model proposed (SI section 2) for the dynamic rectification (Fig. 4d, dashed black) is also characterized 
by a standard harmonic series, as shown in Fig. S4c. We also note that the second harmonic in the FFT 



is critical for the observation of thermal rectification. We postulate, and this can be easily confirmed, 
that the even numbered harmonics, in particular, are important for shifting the input temperature 
oscillations, such that single polarity output is observed. 

The FFTs in Fig. S4d to S4f correspond to the models in Fig. S3a (S3b) (black), Fig. S3a (red), and Fig. 
S3b (red), respectively. The data in Fig. S3a (S3b) (black) and Fig. S3a (red) are not characterized by 
dynamic thermal rectification. The FFTs in Fig. S4 reflect this also. For the FFT in Fig. S4d, a single 
peak is observed – related to the input driving frequency – as anticipated for a linear thermal circuit 

characterized by a single thermal diffusivity (  and  dictate that all temperature oscillations occur 𝑇𝑎 𝑇𝑚

within melting range for this case, hence a single thermal diffusivity). For Fig. S4e, only odd-numbered 
harmonics are observed. Again, even-numbered harmonics, which we postulate as being critical for 
dynamic thermal rectification are missing in the FFT, as is dynamic thermal rectification in Fig. S3a 
(red). However, for the FFT in Fig. S4f, we observe a standard harmonic series – characteristic of 
dynamic thermal rectification – which matches with the dynamic thermal rectification results in Fig. 
S3b (red). 



Fig. S4: a) FFT for the open circuit (blue) experimental data in Fig. 4d as a function of angular 

frequency.  refers to the funadamental driving frequency (0.0785 s-1) for the thermal circuit. b) FFT 𝜔𝑓

for the closed circuit (red) experimental data in Fig. 4d as a function of angular frequency. c) FFT for 
the theoretical data (dashed black) in Fig. 4d as a function of angular frequency. d) FFT for the 
theoretical data (black) in Fig. S3a and S3b as a function of angular frequency. e) FFT for the 
theoretical data (red) in Fig. S3a as a function of angular frequency. f) FFT for the theoretical data 
(red) in Fig. S3b as a function of angular frequency.

6. Experimental Temperature Difference Output and FFT for a Linear System:

Using the experimental setup described in Fig. 4c, we probed the performance of a linear thermal 
circuit, as discussed in eqn (6)-(8) and Fig. 4a. The results are shown in Fig. S5 for the same input 
driving frequency as used in Fig. 4d. The output is clearly bipolar and symmetric around zero (red 
line), and the FFT (Fig. S5b) shows a single peak, which corresponds to the driving frequency. This 



experiment and its results serve as a control for the experimental setup and illustrate the 
characteristics of a linear thermal circuit, as described in the manuscript. 

Fig. S5: a) Temperature difference output for a linear thermal circuit using the experimental setup 
described in the experimental section and Fig. 4c. The angular temperature oscillation frequency is 

. Linear thermal masses (1: 3.2 mm polycarbonate; 2: 4.9 mm steel) were situated on 𝜔 = 0.0785 𝑠 ‒ 1

either side of the central thermoelectric in lieu of the thermal diodes, as shown in eqn (6)-(8) and Fig. 
4a. The experimental output is translated to a temperature difference using a Seebeck coefficient (

). b) FFT for the temperature difference output shown in Fig. S5a. The fundamental Γ𝑆 = 3 𝑚𝑉 𝐾 ‒ 1

frequency is the same as the driving frequency, .𝜔𝑓 = 0.0785 𝑠 ‒ 1
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