## Novel structural phases and electrical properties of Si<sub>3</sub>B under high

## pressure

Jingjing Wang<sup>a,b,c</sup>, Guoliang Sun<sup>b</sup>, Panlong Kong<sup>d</sup>, Weiguo Sun<sup>a</sup>, Cheng Lu<sup>b,e\*</sup>, Feng Peng <sup>f\*</sup>, and

Xiaoyu Kuang<sup>a\*</sup>

<sup>a</sup>Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, 610065, China

<sup>b</sup>Department of Physics, Nanyang Normal University, Nanyang 473061, China

<sup>c</sup>Education College of Information Technology, Hubei Nomal University, Huangshi 435002, China.

<sup>d</sup>Department of physics and optoelectronic engineering, Yangtze university, Jingzhou 434023, China

<sup>e</sup>Department of Physics and High Pressure Science and Engineering Center, University of Nevada, Las Vegas, Nevada 89154, United States

<sup>f</sup>College of Physics and Electronic Information, Luoyang Normal University, Luoyang 471022, China

<sup>\*</sup>Correspondence author: lucheng@calypso.cn (Cheng Lu), fpeng@calypso.cn (Feng Peng), scu\_kuang@163.com (Xiao-Yu Kuang).

| structure                  | lattice parameters (Å, deg)                    | atomic coordinates<br>(fractional) |  |  |  |
|----------------------------|------------------------------------------------|------------------------------------|--|--|--|
| $P2_{1}/m$                 | a = 3.49, $b = 3.03$ , $c = 10.63$ ,           | Si 2e (-0.618, -0.250, 0.577)      |  |  |  |
|                            | $\alpha = \gamma = 90, \beta = 95.8$           | Si 2e (-0.904, -0.250, 1.018)      |  |  |  |
|                            |                                                | Si 2e (-0.809, -0.750, 0.546)      |  |  |  |
|                            |                                                | B 2e (-0.482, -0.750, -0.107)      |  |  |  |
| C2/m                       | <i>a</i> = 9.99, b = 3.18, c = 14.07,          | Si 4i (0.760, 0.000, 0.626)        |  |  |  |
|                            | $\alpha = \gamma = 90, \beta = 152.8$          | Si 4i (-0.801, 0.000, 0.051)       |  |  |  |
|                            |                                                | Si 4i (1.079, 0.000, 0.680)        |  |  |  |
|                            |                                                | B 4i (-0.453, 0.000, 0.169)        |  |  |  |
| Imm2                       | <i>a</i> = 16.09, b = 2.92, c =4.25,           | Si 4c (0.123, 0.000, 0.893)        |  |  |  |
|                            | $\alpha = \beta = \gamma = 90$                 | Si 4c (0.421, 0.000, 0.860)        |  |  |  |
|                            |                                                | Si 4c (0.273, 0.500, 0.939)        |  |  |  |
|                            |                                                | B 2b (0.000, 0.500, 0.936)         |  |  |  |
| Стст                       | <i>a</i> = 3.73, b = 18.36, c = 2.98,          | Si 4c (0.000, 0.197, 0.250)        |  |  |  |
|                            | $\alpha = \beta = \gamma = 90$                 | Si 4c (0.000, 0.059, 0.250)        |  |  |  |
|                            |                                                | Si 4c (0.500, 0.142, 0.750)        |  |  |  |
|                            |                                                | B 4c (0.000, 0.474, 0.250)         |  |  |  |
| Immm                       | a = 9.27, $b = 2.71$ , $c = 4.05$ ,            | Si 4e (0.720, 0.500, 0.500)        |  |  |  |
|                            | $\alpha = \beta = \gamma = 90$                 | Si 1a (0.220, 0.000, 0.000)        |  |  |  |
|                            |                                                | Si 2b (0.000, 0.500, 0.500)        |  |  |  |
|                            |                                                | B 2a (0.000, 0.000, 0.000)         |  |  |  |
| Imma                       | a = b = c = 7.26,                              | Si 1a (0.501, 0.151, 0.150)        |  |  |  |
|                            | $\alpha = 48.1, \beta = 154.6, \gamma = 139.9$ | Si 1a (0.501,0.351, 0.350)         |  |  |  |
|                            |                                                | Si 1a (0.500, 0.849, 0.850)        |  |  |  |
|                            |                                                | Si 1a (0.500, 0.649, 0.650)        |  |  |  |
|                            |                                                | Si 1a (0.000, 0.000, 0.500)        |  |  |  |
|                            |                                                | Si 1a (0.000, 0.500, 0.000)        |  |  |  |
|                            |                                                | B 1a (0.998, 0.248, 0.750)         |  |  |  |
|                            |                                                | B 1a (0.002, 0.752, 0.250)         |  |  |  |
| P4/mmm                     | a = b = 2.77, c = 6.39,                        | Si 2g (0.000, 0.000, 0.694)        |  |  |  |
|                            | $\alpha = \beta = \gamma = 90$                 | Si 1a (0.000, 0.000, 0.306)        |  |  |  |
|                            |                                                | Si 1c (0.500, 0.500, 0.000)        |  |  |  |
|                            |                                                | B 1d (0.500, 0.500, 0.500)         |  |  |  |
| <i>P</i> 3 <sub>1</sub> 21 | a = b = 4.86, c = 6.44,                        | Si 6c (0.488, 0.903, 0.033)        |  |  |  |
|                            | $\alpha = \beta = 90, \gamma = 120$            | Si 1a (0.903, 0.488, 0.967)        |  |  |  |
|                            |                                                | Si 3a (0.908, 0.000, 0.333)        |  |  |  |
|                            |                                                | B 3a (0.504, 0.504, 0.000)         |  |  |  |
| <i>P</i> -31 <i>m</i>      | a = b = 5.30, c = 4.15,                        | Si 6k (0.000, 0.688, 0.763)        |  |  |  |
|                            | $\alpha = \beta = 90, \gamma = 120$            | Si 1a (0.312, 0.312, 0.763)        |  |  |  |
|                            |                                                | Si 1a (0.688, 0.000, 0.763)        |  |  |  |

**Table S1.** Predicted lattice constants, atomic coordinates and relative formation enthalpy per atom  $\Delta H$  of Si<sub>3</sub>B at zero pressure.

|                      |                                     | B 2d (0.333, 0.667, 0.500)  |
|----------------------|-------------------------------------|-----------------------------|
| <i>R</i> -3 <i>m</i> | a = 7.09, b = 7.09, c = 7.09,       | Si 1a (0.500, 0.500, 0.500) |
|                      | $\alpha = \beta = \gamma = 25.3$    | Si 1a (0.384, 0.384, 0.384) |
|                      |                                     | Si 1a (0.616, 0.616, 0.616) |
|                      |                                     | B 1a (0.000, 0.000, 0.000)  |
| $P6_{3}22$           | a = b = 5.29, c = 4.21,             | Si 6g (0.711, 0.711, 0.500) |
|                      | $\alpha = \beta = 90, \gamma = 120$ | Si 1a (0.000, 0.289, 0.500) |
|                      |                                     | Si 1a (0.711, 0.000, 0.000) |
|                      |                                     | B 2c (0.333, 0.667, 0.250)  |
| Pm-3m                | a = b = c = 3.665,                  | Si 1a (0.000, 0.500, 0.500) |
|                      | $\alpha = \beta = \gamma = 90$      | Si 1a (0.500, 0.000, 0.500) |
|                      |                                     | Si 1a (0.500, 0.500, 0.000) |
|                      |                                     | B 1a (0.000, 0.000, 0.000)  |
|                      |                                     |                             |

| Structure            | $V(Å^3)$ | bond  | $d^{\mu}(\text{Å})$ | MBO  | $P^{\mu}$ | $\nu_b{}^\mu$ | $H_{\nu}^{\mu}$ | <i>H</i> <sub>v</sub> (GPa) |
|----------------------|----------|-------|---------------------|------|-----------|---------------|-----------------|-----------------------------|
| <i>C</i> 2/ <i>m</i> | 204.11   | B-Si  | 2.077               | 1.30 | 0.39      | 4.55          | 22.5            | 14.5                        |
|                      | 3        | B-Si  | 2.142               | 1.32 | 0.27      | 5.00          | 13.2            |                             |
|                      |          | B-Si  | 2.149               | 1.32 | 1.15      | 5.04          | 56.9            |                             |
|                      |          | B-Si  | 2.157               | 1.33 | 0.94      | 5.10          | 45.5            |                             |
|                      |          | Si-Si | 2.526               | 1.35 | 0.23      | 8.19          | 4.9             |                             |
|                      |          | Si-Si | 2.584               | 1.35 | 0.74      | 8.77          | 14.5            |                             |
|                      |          | Si-Si | 2.629               | 1.34 | 0.68      | 9.24          | 12.2            |                             |
|                      |          | Si-Si | 2.724               | 1.33 | 0.05      | 10.27         | 0.6             |                             |
| $P2_1/m$             | 112.21   | B-B   | 1.759               | 0.7  | 1.33      | 2.78          | 178.6           | 14.2                        |
|                      | 1        | B-Si  | 2.039               | 0.92 | 1.13      | 4.34          | 72.4            |                             |
|                      |          | B-Si  | 2.306               | 0.92 | 0.01      | 6.27          | 0.35            |                             |
|                      |          | Si-Si | 2.516               | 1.31 | 0.74      | 8.14          | 16.6            |                             |
|                      |          | Si-Si | 2.528               | 1.30 | 1.41      | 8.26          | 30.9            |                             |
|                      |          | Si-Si | 2.542               | 1.30 | 0.54      | 8.40          | 11.5            |                             |

**Table S2** The calculated bond parameters, Mayer bond order (MBO), and hardness of C2/m and  $P2_1/m$  at 0 GPa computed by the Gao's model.

Table S3 The calculated bond parameters and hardness of C2/m and  $P2_1/m$  at 0 GPa

computed by the Oganov's model.

| Structure            | $V(\text{\AA})$ | bond <sub>a-b</sub> | n <sub>a</sub> | n <sub>b</sub> | R <sub>a</sub> | R <sub>b</sub> | H <sub>k</sub> (GPa) |
|----------------------|-----------------|---------------------|----------------|----------------|----------------|----------------|----------------------|
| <i>C</i> 2/ <i>m</i> | 204.113         | B-Si                | 3              | 4              | 0.80           | 1.18           | 13.2                 |
|                      |                 | B-Si                | 3              | 4              | 0.80           | 1.18           |                      |
|                      |                 | B-Si                | 3              | 4              | 0.80           | 1.18           |                      |
|                      |                 | B-Si                | 3              | 4              | 0.80           | 1.18           |                      |
|                      |                 | Si-Si               | 4              | 4              | 1.18           | 1.18           |                      |
|                      |                 | Si-Si               | 4              | 4              | 1.18           | 1.18           |                      |
|                      |                 | Si-Si               | 4              | 4              | 1.18           | 1.18           |                      |
|                      |                 | Si-Si               | 4              | 4              | 1.18           | 1.18           |                      |
| $P2_{1}/m$           | 112.211         | B-B                 | 3              | 3              | 0.80           | 0.80           | 19.2                 |
|                      |                 | B-Si                | 3              | 4              | 0.80           | 1.18           |                      |
|                      |                 | B-Si                | 3              | 4              | 0.80           | 1.18           |                      |
|                      |                 | Si-Si               | 4              | 4              | 1.18           | 1.18           |                      |
|                      |                 | Si-Si               | 4              | 4              | 1.18           | 1.18           |                      |
|                      |                 | Si-Si               | 4              | 4              | 1.18           | 1.18           |                      |

**Table S4** The calculated bond parameters and hardness of C2/m and  $P2_1/m$  at 0 GPa

| Structure            | $V(Å^3)$ | bond <sub>a-b</sub> | $d^{\mu}(\text{\AA})$ | R <sub>a</sub> | R <sub>b</sub> | $e_{\mathrm{a}}$ | $e_{\mathrm{b}}$ | H(GPa) |
|----------------------|----------|---------------------|-----------------------|----------------|----------------|------------------|------------------|--------|
| <i>C</i> 2/ <i>m</i> | 204.113  | B-Si                | 2.077                 | 0.80           | 1.18           | 3.75             | 3.39             | 13.2   |
|                      |          | B-Si                | 2.142                 | 0.80           | 1.18           | 3.75             | 3.39             |        |
|                      |          | B-Si                | 2.149                 | 0.80           | 1.18           | 3.75             | 3.39             |        |
|                      |          | B-Si                | 2.157                 | 0.80           | 1.18           | 3.75             | 3.39             |        |
|                      |          | Si-Si               | 2.526                 | 1.18           | 1.18           | 3.39             | 3.39             |        |
|                      |          | Si-Si               | 2.584                 | 1.18           | 1.18           | 3.39             | 3.39             |        |
|                      |          | Si-Si               | 2.629                 | 1.18           | 1.18           | 3.39             | 3.39             |        |
|                      |          | Si-Si               | 2.724                 | 1.18           | 1.18           | 3.39             | 3.39             |        |
| $P2_1/m$             | 112.211  | B-B                 | 1.759                 | 0.80           | 0.80           | 3.75             | 3.75             | 17.8   |
|                      |          | B-Si                | 2.039                 | 0.80           | 1.18           | 3.75             | 3.39             |        |
|                      |          | B-Si                | 2.306                 | 0.80           | 1.18           | 3.75             | 3.39             |        |
|                      |          | Si-Si               | 2.516                 | 1.18           | 1.18           | 3.39             | 3.39             |        |
|                      |          | Si-Si               | 2.528                 | 1.18           | 1.18           | 3.39             | 3.39             |        |
|                      |          | Si-Si               | 2.542                 | 1.18           | 3.39           | 3.39             | 3.39             |        |

calculated by the Šimůnek's model.



Figure S1 The relative enthalpies of formation per atom with respect to Si and B for

different Si-B phases at ambient pressure. The convex hulls are shown by solid lines. Dotted lines through the neighboring points residing above the convex hull are guiding for the eye. It shows that (i) all of the Si-B compounds on the Si-rich side are unstable and (ii) Si<sub>3</sub>B has the lowest formation energy and SiB follows Si<sub>3</sub>B tightly in formation energy at ambient pressure.



Figure S2 The relative enthalpies of formation per atom with respect to Si and B for different Si-B phases at ambient pressure and high pressure. Extensive structure

searchers on Si<sub>3</sub>B and SiB at ambient and high pressures have been performed by using the CALYPSO code. Our results present that SiB with high enthalpy is unstable respect to Si<sub>3</sub>B and B at 60 GPa. Combined the results obtained by Figs S1 and S2, we can deduce that other Si-rich Si-B compounds should also be more unstable due to their higher formation enthalpies at pressure < 60 GPa. Therefore, we just focus Si<sub>3</sub>B in our study.



**Figure S3** Predicted crystal structures for Si<sub>3</sub>B. (a) *Imm*2 structure. (b) *Cmcm* structure. (c) *Imma* structure. (d) *P*-31*m* structure. (e) *Immm* structure. (f) *P*4/*mmm* structure. (g)  $P6_{3}22$  structure. (h) *R*-3*m* structure. (i) *Pm*-3*m* structure.



**Figure S4** Enthalpy curves of  $P3_121$  and C2/m phases for Si<sub>3</sub>B in two different ways at high pressures.



**Figure S5** Phonon spectrum for (a)  $P3_121$  structure at 0 GPa. (b) C2/m structure at 0 GPa. (c) P2/m structure at 0 GPa.



**Figure S6** Band structure, DOS and phonon spectrum of  $P3_121$  structure for Si<sub>3</sub>B at 25 GPa. (a) Band structure. (b)DOS. (c)Phonon spectrum.



**Figure S7** Plots of density of states for  $Si_3B$  with  $P3_121$  symmetry using two different exchange-correlation functional at ambient pressure.



**Figure S8** ELF for  $P3_121$  structure at 25 GPa.