Electronic Supplementary Infromation on

Stability and growth mechanism of self-assembling putative anti-freeze cyclic peptides

Z. Faidon Brotzakis,^{a‡} Mascha Gehre, ^a Ilja K. Voets, ^b and Peter G. Bolhuis ^{*a}

^a Van 't Hoff Institute for Molecular Sciences, Universiteit van Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands

^b Laboratory of Macromolecular and Organic Chemistry, Laboratory of Physical Chemistry, and Institute for Complex Molecular Systems, Eindhoven University of Technology, Post Office Box 513, 5600 MB, Eindhoven, Netherlands.

‡Present address: Department of Chemistry and Applied Bioscience, ETH Zürich and Facoltà di Informatica, Istituto di Scienze Computazionali, Universita della Svizzera Italiana, Via Buffi 13 Lugano, CH-6900, Lugano, Switzerland.

Straightforward MD and nanotube sequences

This Supplementary Information details some of the settings and outcome of the straightforward MD simulation discussed in the Main Text. Table 1 reports the literature values for the dihedral angles for beta strands¹. Table 2 gives the composition of the system for each of the MD simulations. Table 3 and 4 summarize the outcome of the MD simulations of the original and altered CPNT systems, respectively. Fig. 1 plots the radial distribution function of water around the hydroxyl oxygen of THR of AFCP. Table 5 and 6 list the sequence and the orientation of the original and altered CPNT systems, respectively. Finally, Table 7 and 8 report the measured average and standard deviation of backbone ϕ and ψ angles for each aminoacid of the different size nanotubes of the original and altered CP sequence, respectively.

Amino acid	Φ_{aver}	σ_{Φ}	Ψ_{aver}	σ_{Ψ}
L-ALA	-130.2	21.4	143.8	14.6
L-LEU	-115.2	15.8	131.8	13.5
L-LYS	-118.9	17.5	134.2	15.3
L-THR	-123.9	14.0	138.1	14.3
D-ALA	130.2	-	-143.8	-

Table 1 Average values for the dihedral angles Φ, Ψ and their estimated standard deviations $\sigma_{\phi, \psi}$ for anti-parallel β -strands¹.

	Original CP sequence												
System	#CP	#AA	$#H_20$	#atoms	V (nm³)								
CPNT2	2	16	4093	12519	127.48								
CPNT3	3	24	4519	13917	139.09								
CPNT4	4	32	4847	15021	151.47								
CPNT5	5	40	5549	17247	174.34								
CPNT6	6	48	6280	19560	197.25								
		AFC	P sequen	ice									
System	#CP	#AA	$#H_20$	#atoms	V (nm ³)								
CPNT2	2	16	4035	12325	122.57								
CPNT3	3	24	4100	12630	131.07								
CPNT4	4	32	4662	14426	144.55								
CPNT5	5	40	5417	16801	169.58								
CPNT6	6	48	6267	19317	195.47								

Table 2 Original CP sequence: Composition of systems containing CPNTs of sequence cyclo-[(L-LYS-D-ALA-L-LEU- D-ALA)₂]. AFCP sequence: Composition of systems containing nanotubes of AFCP sequence cyclo-[(L-LYS-D-ALA)₂-(L- THR-D-ALA)₂].

System	Run 1	Run 2	Run 3	Run 4	Run 5
CPNT2	В	В	В	В	В
CPNT3	В	В	В	В	В
CPNT4	В	В	В	В	В
CPNT5	В	В	В	В	В
CPNT6	В	В	В	В	$B \to I$

Table 3 Original sequence: Visiting states of different size CPNTs in the course of a 100 ns NPT simulations. B denotes the bound state and I the area of phase space which does not belong neither to B nor U.

System	Run 1	Run 2	Run 3	Run 4	Run 5
CPNT2	$B \rightarrow I \rightarrow U \rightarrow$	В	$B{\rightarrow}I{\rightarrow}U{\rightarrow}I$	В	$B{\rightarrow}I{\rightarrow}B$
	$I {\rightarrow} U {\rightarrow} I$				
CPNT3	В	В	В	В	В
CPNT4	В	В	В	В	В
CPNT5	В	В	В	В	В
CPNT6	В	В	В	В	В

Table 4 AFCP sequence: Visiting states of different size CPNTs in the course of a 100 ns NPT simulations. *B* denotes the bound state and *U* the unbound state. *I* denotes the area of phase space which does not belong neither to *B* nor *U*.

Figure 1 Radial distribution function of the water oxygen around the side chain oxygen of the THR residue in the AFCP sequence hexamer.

Orientation	Sequence												
$\mathbf{N} ightarrow \mathbf{C}$	L-LYS-1	D-ALA-2	L-LEU-3	D-ALA-4	L-LYS-5	D-ALA-6	L-LEU-7	D-ALA-8	CP1				
$\mathbf{C} \leftarrow \mathbf{N}$	L-LYS-9	D-ALA-10	L-LEU-11	D-ALA-12	L-LYS-13	D-ALA-14	L-LEU-15	D-ALA-16	CP2				
$\mathbf{N} ightarrow \mathbf{C}$	L-LYS-17	D-ALA-18	L-LEU-19	D-ALA-20	L-LYS-21	D-ALA-22	L-LEU-23	D-ALA-24	CP3				
$\mathbf{C} \leftarrow \mathbf{N}$	L-LYS-25	D-ALA-26	L-LEU-27	D-ALA-28	L-LYS-29	D-ALA-30	L-LEU-31	D-ALA-32	CP4				
$\mathbf{N} ightarrow \mathbf{C}$	L-LYS-33	D-ALA-34	L-LEU-35	D-ALA-36	L-LYS-37	D-ALA-38	L-LEU-39	D-ALA-40	CP5				
$\mathbf{C} \leftarrow \mathbf{N}$	L-LYS-41	D-ALA-42	L-LEU-43	D-ALA-44	L-LYS-45	D-ALA-46	L-LEU-47	D-ALA-48	CP6				

Table 5 Original CP sequence: schematic representation of the arrangement and chirality of the amino acids in the CP chains of sequence cyclo-[(L-LYS-D-ALA-L-LEU-D-ALA)₂] within various CPNTs. The sequential chains are named as CP1 to CP6. The terminals are assumed to be bonded in order to form the cyclic structure.

Orientation	Sequence												
N ightarrow C	L-LYS-1	D-ALA-2	L-THR-3	D-ALA-4	L-THR-5	D-ALA-6	L-LYS-7	D-ALA-8	CP1				
$\mathbf{C} \leftarrow \mathbf{N}$	L-LYS-9	D-ALA-10	L-THR-11	D-ALA-12	L-THR-13	D-ALA-14	L-LYS-15	D-ALA-16	CP2				
N ightarrow C	L-LYS-17	D-ALA-18	L-THR-19	D-ALA-20	L-THR-21	D-ALA-22	L-LYS-23	D-ALA-24	CP3				
$\mathbf{C} \leftarrow \mathbf{N}$	L-LYS-25	D-ALA-26	L-THR-27	D-ALA-28	L-THR-29	D-ALA-30	L-LYS-31	D-ALA-32	CP4				
N ightarrow C	L-LYS-33	D-ALA-34	L-THR-35	D-ALA-36	L-THR-37	D-ALA-38	L-LYS-39	D-ALA-40	CP5				
$\mathbf{C} \leftarrow \mathbf{N}$	L-LYS-41	D-ALA-42	L-THR-43	D-ALA-44	L-THR-45	D-ALA-46	L-LYS-47	D-ALA-48	CP6				

Table 6 AFCP sequence: schematic representation of the arrangement and chirality of the amino acids in the CP Chains of sequence cyclo-[(L-LYS-D-ALA-)₂-(L-THR-D-ALA)₂] within various CPNTs. The sequential chains are named as CP1 to CP6. The terminals are assumed to be bonded in order to form the cyclic structure

	CPNT2				CPNT3		CPNT4				CPNT5		CPNT6		
angles	LYS	LEU	ALA	LYS	LEU	ALA	LYS	LEU	ALA	LYS	LEU	ALA	LYS	LEU	ALA
Φ	-11627	-102_{18}	13021	-119_{24}	-11619	13517	-11627	-11319	13617	-11926	-119_{18}	13715	11827	-116 ₁₉	13815
Ψ	13823	13011	-129_{47}	13716	12914	-127_{45}	13817	12813	-123_{47}	13816	12713	-117_{57}	13816	12712	-116_{56}

Table 7 Average and standard deviation of backbone ϕ and ψ angles for each aminoacid of the different size nanotubes of the original CP sequence.

	CPNT2 CPNT3					CPNT4			CPNT5		CPNT6				
angles	LYS	THR	ALA	LYS	THR	ALA	LYS	THR	ALA	LYS	THR	ALA	LYS	THR	ALA
Φ	-9250	-111_{29}	11429	-12617	-124_{18}	13418	-130_{13}	-128_{14}	13615	-128_{14}	-127_{15}	13714	-13214	-129_{14}	13814
Ψ	13144	11660	-110_{69}	13718	13714	-125_{53}	13714	13613	-127_{47}	13713	134 ₁₃	-122_{54}	13614	13415	-130_{39}

Table 8 Average and standard deviation of backbone ϕ and ψ angles for each aminoacid of the different size nanotubes of the AFCP sequence.

References

[1] S. Hovmo, Acta. Crystallogr. D., 2002, 58, 768.