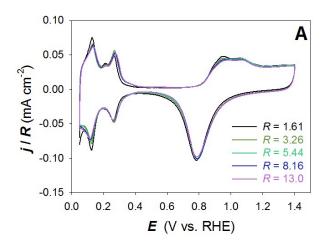
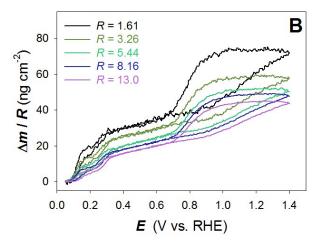
Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2017

Electronic supplementary information

Interfacial Structure of Atomically Flat Polycrystalline Pt Electrodes and Modified Sauerbrey Equation


Jutae Kim,^a Patrick Urchaga,^b Stève Baranton,^b Christophe Coutanceau,^b and Gregory Jerkiewicz*^a


^aDepartment of Chemistry, Queen's University, 90 Bader Lane, Kingston, ON, K7L 3N6, Canada

^bInstitut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), UMR CNRS 7285, Université de Poitiers, 4 rue Michel Brunet, TSA 51106, 86073, Poitiers Cedex 9, France

*Corresponding author. Email: gregory.jerkiewicz@queensu.ca

The current density (j) and the mass change (Δm) values of cyclic-voltammetry (CV) and mass variation (MV) transients shown in Figures 4A and 4B are divided by the corresponding values of the electrode roughness factor (R). Such normalized plots, namely j/R versus E and $\Delta m/R$ versus E, are presented in Figures S1A and S1B, respectively. Figure S1A reveals that the CV profiles normalized for the roughness factor values overlap; the agreement is to $\pm 1.9\%$, which is within the experimental uncertainty. Figure S1B demonstrates that the MV transients normalized for the surface roughness factor do not overlap.

Figure S1. Series of roughness factor normalized CV profiles (**A**) and simultaneously recorded MV transients (**B**) for Pt electrodes of gradually increasing surface roughness $(1.61 \le R \le 13.0)$ acquired in 0.50 M aqueous H₂SO₄ at a potential scan rate of s = 50 mV s⁻¹ and T = 298 K.