Supporting Information of

Does the endohedral boroshperene supersalt FLi₂@B₃₉ maintain "super" properties of its subunits?

A. J. Stasyuk*^a and M. Solà*^a

	Table of contents	Page
Computationa	l details	S2
Figure S1	Initial geometries of FLi_2 subunit for free rotation verification of ${}^{1}(B@2)$ supermolecule.	S4
Table S1	Experimentally measured and theoretically predicted at different levels of theory IP and EA values as well as statistical analysis (signed error (SE) and relative error (RE)) for FLi ₂ and B ₃₉ species.	S4
Table S2	Selected optimized geometrical parameters (bond length (d, Å) and valence angle (A, °)) and statistical analysis (absolute error (AE), mean absolute error (MAE), relative error (RE) and root-mean-squared deviation (RMSD) of atomic positions) for FLi ₂ species obtained at different levels of theory.	S5
Figure S2	Graphical representation and Relative energies of ³ (A@1) ² (B@1) ^{+ 2} (A@2) ^{- 1} (B@2) supermolecules conformers obtained at PBE0/6-31+G(d) level of theory.	S6
Table S3	Encapsulation energies determined in the manner indicated at Scheme S1 for various hybrid functionals with 6-31+g(d) basis set applied for supermolecules of interest.	S6
Table S4	Root-mean-squared deviation (RMSD) of atomic positions for studied with different functionals ${}^{3}(A@1)$, ${}^{2}(B@1)^{+}$, ${}^{2}(A@2)^{-}$ and ${}^{1}(B@2)$ supermolecules optimized at PBE0/6-31+G(d) level of theory.	S7
Table S5	Comparison of geometries of free FLi_2 molecule and FLi_2 encapsulated in $FLi_2@B_{39}$ systems obtained at PBE0/6-311+g(2d) level of theory.	S8
Table S6	Charges and spin density analysis performed with natural population analysis scheme.	S8
Table S7	Computationally obtained values of adiabatic IP and EA, vertical IP, AE, EA and DE energies for B_{39} , FLi_2 species and ¹ (B@2) endohedral complex, as well as statistical analysis (signed error (SE) and relative error values for the denoted species.	S9
Scheme S1	Method for calculation of encapsulation ($\Delta E_{encap.}$), deformation ($\Delta E_{def.}$) and interaction ($\Delta E_{int.}$) energies for studied supermolecules.	S10
Cartesian coor	dinates.	S11
References		S27

Computational details.

Geometrical structures of the endohedral superalkaliborospherenes $FLi_2@B_{39}$, related B_{39}^{-1} nanoclusters and the superalkaline FLi_2 were obtained using density functional theory (DFT) with PBE1PBE (hereafter also termed as PBE0) hybrid functional in the ground state. Pople's 6-311+G(2d) triple- ξ quality basis set with polarization and diffused functions was employed in all cases. The adiabatic ionizations potentials (IP) and electron affinities (EA) as well as all vertical IP and EA for studied systems were obtained at the same level of theory.

The encapsulation energies of given endohedral complexes $FLi_2@B_{39}$ was calculated as the energy difference between the complex and its constituent parts:

$$\Delta E_{encap.} = E_{(FLi_2@B_{39})} - \left[E_{B_{39}} + E_{FLi_2}\right]$$

where $E_{(FLi_2@B_{39})}$, $E_{B_{39}}$ and E_{FLi_2} refer to DFT energies of complex and its fragments in equilibrium geometries. Deformation energy for each of studied complexes has been determined using following equation:

$$\Delta E_{def.} = \begin{bmatrix} E^{complex geom.} & E^{eq. geom.} \\ B_{39} \end{bmatrix} + \begin{bmatrix} E^{complex geom.} & E^{eq. geom.} \\ FLi_2 \end{bmatrix}$$

At the same time, energy of encapsulation comprises both interaction (${}^{\Delta E}_{int.}$) and deformation (${}^{E}_{def.}$) energies. Thus ${}^{\Delta E}_{int.}$ can be represented as following:

$$\Delta E_{int.} = \Delta E_{encap.} - \Delta E_{def.}$$

All calculations were carried out using Gaussian 09. Rev.D01^{S1} Natural Population Analysis was carried out with NBO 6.0 program.^{S2} Coupled cluster calculations were performed using the domain-based local pair natural orbital coupled cluster method with single, double, and perturbative triple excitations DLPNO-CCSD(T) with cc-PVTZ/C triple- ξ quality basis set auxiliary basis set, VeryTightSCF and Grid6 using ORCA 4.0.0.2 program^{S3}.

Carried out functionals and basis set benchmark revealed that adiabatic electron affinity values for SH unit could be perfectly predicted using any of the tested DFT functionals. Besides that the influence of basis set on EA is negligible. Regardless to the used basis set a relative error in predicted EA was less than 2%, whereas an absolute error value was about 0.05 to 0.07 eV. Predictions obtained for SA unit were a slightly worse. For B3LYP functional, the calculated IP values have been characterized by relative error of 11% to 12%. Very similar results were obtained for PBE0 functional – relative error is about 10% to 11%, whereas the absolute error has been determined at 0.37 to 0.40 eV level depending on the basis set. Close examination of optimized geometries for both neutral and cationic forms of the FLi₂ obtained with PBE0 and B3LYP functionals and their comparison with FLi₂ geometry obtained with CCSD/basis set has been performed (Table S2, supporting information). We found out that for doublet state of FLi₂ fragment both studied hybrid functionals reproduce perfectly bond lengths with the error less

than 1%. At the same time, inaccuracy in angle description can reach up to 9% for B3LYP and about 4% for PBEO functional. Both functionals characterized superiorly singlet cationic state of FLi₂ with relative error level for bonds and angles description less than 0.5% regardless to the used basis set. In order to determine whether a noticeable error in the description of the IP for FLi₂ species is a consequence of geometrical inaccuracy description, we have performed calculation of IP values by both functionals for FLi₂ in geometry obtained with CCSD method. As expected, previously mentioned differences in geometries obtained by DFT and CCSD methods have had minimal effect. For both functionals, IP value differences were less than 0.01 eV. Thus, it has allowed us to assume that the main reason of the above-discussed non-negligible error in the IP prediction is most likely the well-known effect of the self-interaction error in DFT, which artificially stabilizes delocalized states.⁵⁴⁻⁵⁷ The fact that the influence of this effect on B₃₉ species was not observed is in a good agreement with the fact that denoted effect decreases significantly with the system size.

Figure S1. Initial geometries of FLi₂ subunit for free rotation verification of ¹(B@2) supermolecule.

Table S1. Experimentally measured and theoretically predicted at different levels of theory IP and EA values as well as statistical analysis (signed error (SE) and relative error (RE)) for FLi_2 and B_{39} species.

		B3LYP		PBEO			
	6-31+g(d)	6-311+g(d)	6-311+g(2d)	6-31+g(d)	6-311+g(d)	6-311+g(2d)	
FLi ₂ ⁰ , a.u	-114.9829	-115.0172	-115.0193	-114.8317	-114.8638	-114.8661	
FLi ₂ 1+, a.u	-114.8274	-114.8626	-114.8639	-114.6782	-114.7113	-114.7127	
Calc. IP, eV	4.23	4.21	4.23	4.18	4.15	4.17	
Experim. IP			2 70	+0.20			
value, eV	3.78±0.20						
SE, eV	0.45	0.43	0.45	0.40	0.37	0.39	
RE, %	11.9	11.4	11.9	10.6	9.8	10.3	

B ₃₉ ¹⁻ , a.u	-968.8544	-969.1222	-969.1476	-967.8124	-967.9327	-967.9582			
B ₃₉ ⁰ , a.u	-968.9937	-968.9818	-969.0075	-967.6694	-967.7889	-967.8147			
Calc. EA, eV	3.79	3.82	3.81	3.89	3.91	3.90			
Experim. EA	2.04/5								
value, eV		3.84(5)							
SE, eV	-0.05	-0.02	-0.03	0.05	0.07	0.06			
RE, %	1.3	0.5	0.8	1.3	1.8	1.6			

Table S2. Selected optimized geometrical parameters (bond length (d, Å) and valence angle (A, °)) and statistical analysis (absolute error (AE), mean absolute error (MAE), relative error (RE) and root-mean-squared deviation (RMSD) of atomic positions) for FLi₂ species obtained at different levels of theory.

	B3LYP				PBEO			
		6-	6-	6-	6-	6-	6-	6-
		31+g(d)	311+g(d)	311+g(2d)	31+g(d)	311+g(d)	311+g(2d)	311+g(2d)
	d(F¹Li), Å	1.6824	1.6821	1.6756	1.6848	1.6859	1.6785	1.6901
	A(F ¹ LiF ²), °	110.445	109.949	107.937	105.378	105.031	103.831	101.010
	MAE, Å d(FLi)	0.0077	0.008	0.0145	0.0053	0.0048	0.0116	
0,2}	RE, % d(FLi)	0.46	0.47	0.86	0.31	0.28	0.69	
	AE, ° A(F ¹ LiF ²)	9.435	8.504	6.492	3.933	3.586	2.386	
	RE, % A(F ¹ LiF ²)	9.34	8.42	6.43	3.89	3.55	2.36	
	RMSD ^a		0.059					
	d(F¹Li), Å	1.6774	1.6759	1.6694	1.6754	1.6752	1.6685	1.6809
	A(F ¹ LiF ²), °	173.844	173.876	174.011	173.887	173.890	174.03	173.734
	MAE, Å d(FLi)	0.0035	0.0050	0.0115	0.0056	0.0057	0.0124	
1,1}	RE, % d(FLi)	0.21	0.30	0.68	0.33	0.34	0.74	
	AE, ° A(F ¹ LiF ²)	0.110	0.142	0.277	0.153	0.156	0.296	
	RE, % A(F ¹ LiF ²)	0.06	0.08	0.16	0.09	0.09	0.17	
	RMSD ^a		0.009			0.010		

^a RMSD was minimized for all atoms of FLi₂ for geometries obtained with B3LYP or PBE0 functionals and CCSD method with 6-311+g(2d) basis set using Chemcraft software v. 1.80⁵⁸

Figure S2. Graphical representation and Relative energies of ${}^{3}(A@1)$, ${}^{2}(B@1)^{+}$, ${}^{2}(A@2)^{-}$ and ${}^{1}(B@2)$ supermolecules conformers obtained at PBE0/6-31+G(d) level of theory.

A. Graphical representation and relative energies of ³(A@1) conformers

Table S3. Encapsulation energies determined in the manner indicated at Scheme S1 for various hybrid functionals with 6-31+g(d) basis set applied for supermolecules of interest.

	B3LYP	PBEO	TPSSh	mPW1PW91	HSE06
³ (A@1), kcal/mol	3.17	-14.21	-17.37	-9.52	-12.28
²(B@1)⁺, kcal/mol	33.27	19.41	17.21	24.18	20.69
² (A@2) ⁻ , kcal/mol	2.49	-14.67	-17.09	-10.08	-13.27
¹ (B@2), kcal/mol	-42.87	-56.14	-58.39	-51.34	-54.87

Table S4. Root-mean-squared deviation (RMSD^a) of atomic positions for studied with different functionals ${}^{3}(A@1)$, ${}^{2}(B@1)^{+}$, ${}^{2}(A@2)^{-}$ and ${}^{1}(B@2)$ supermolecules optimized at PBE0/6-31+G(d) level of theory.

	B3LYP	PBEO	TPSSh	mPW1PW91	HSE06			
			³ (A@1)					
B3LYP	0	0.02286	0.02667	0.01985	0.02207			
PBEO		0	0.01287	0.00400	0.00391			
TPSSh			0	0.01421	0.01305			
mPW1PW91				0	0.00627			
HSE06		0						
			² (B@1) ⁺					
B3LYP	0	0.02073	0.02212	0.01885	0.01560			
PBEO		0	0.00928	0.00281	0.00906			
TPSSh			0	0.00950	0.01320			
mPW1PW91				0	0.00829			
HSE06					0			

	² (A@2) ⁻					
B3LYP	0	0.01989	0.01956	0.01809	0.01867	
PBEO		0	0.00929	0.00262	0.00329	
TPSSh			0	0.00907	0.00995	
mPW1PW91				0	0.00449	
HSE06					0	
	¹ (B@2)					
B3LYP	0	0.02072	0.02112	0.01829	0.02042	
PBEO		0	0.00882	0.00310	0.00292	
TPSSh			0	0.00905	0.00966	
mPW1PW91				0	0.00488	
					0	

^a RMSD was minimized for all atoms for geometries obtained with denoted functionals with 6-31+g(d) basis set using Chemcraft software v. 1.80

Table S5. Comparison of geometries of free FLi_2 molecule and FLi_2 encapsulated in $FLi_2@B_{39}$ systems obtained at PBE0/6-311+g(2d) level of theory.

		FLi2	³ (A@1)	² (B@1) ⁺	²(A@2)⁻	¹ (B@2)
(0,2)	B, Å	1.67853	1.60435	-	1.60249	-
{0,2}	A, °	103.831	107.499	-	105.333	-
[1 1]	B <i>,</i> Å	1.66850	-	1.61400	-	1.59513
{1,1}	A, °	174.030	-	103.284	-	104.582

Table S6. Charges and spin density analysis performed with natural population analysis scheme.

	³ (A(³ (A@1)		² (B@1) ⁺		²(A@2)⁻		¹ (B@2)	
	Charge	Spin	Charge	Spin	Charge	Spin	Charge	Spin	
Frag. 1	-0.849	1.998	0.176	0.998	-1.836	0.999	-0.833	0.000	
Frag. 2	0.849	0.002	0.824	0.002	0.836	0.001	0.833	0.000	
Total	0.000	2.000	1.000	1.000	-1.000	1.000	0.000	0.000	
q(Li ¹)	0.821	0.001	0.816	0.000	0.819	0.001	0.821	0.000	
q(Li ²)	0.845	0.000	0.841	0.000	0.845	0.000	0.845	0.000	
q(F)	-0.816	0.001	-0.833	0.002	-0.828	0.000	-0.833	0.000	

Table S7. Computationally obtained values of adiabatic IP and EA, vertical IP, AE, EA and DE energies for B_{39} , FLi₂ species and ¹(B@2) endohedral complex, as well as statistical analysis (signed error (SE) and relative error values for the denoted species.

	¹ (B@2)	B ₃₉ {0,2}	FLi ₂ {0,2}
Adiabatic IP, eV	7.19	-	4.17
Vertical IP, eV	7.34	-	4.86
Vertical AE, eV	6.99	-	4.04
SE(AIP-VIP) , eV	-0.15	-	-0.69
RE, %	2.1	-	16.6
SE(AIP-VAE) , eV	0.20	-	0.13
RE, %	2.8	-	3.1
Adiabatic EA, eV	2.38	3.90	-
Vertical EA, eV	2.20	3.77	-
Vertical DE, eV	2.54	4.03	-
SE(AEA-VEA) , eV	0.18	0.13	-
RE, %	7.6	3.3	-
SE(AEA-VDE) , eV	-0.16	0.13	-
RE, %	6.7	3.3	-

Scheme S1. Method for calculation of encapsulation ($\Delta E_{encap.}$), deformation ($\Delta E_{def.}$) and interaction ($\Delta E_{int.}$) energies for studied supermolecules.^a

$$\begin{split} B^{X_1,Y_1}_{39} + FLi^{X_2,Y_2}_2 &\to (FLi_2@B_{39})^{X_3,Y_3} \\ & \text{Individual} & \text{Complex} \end{split} \\ \Delta E_{encap.} &= E(FLi_2@B_{39})^{X_3,Y_3} - (E^{idivid.}_{B^{X_1,Y_1}_{39}} + E^{idivid.}_{FLi^{X_2,Y_2}_2}) = \Delta E_{def.} + \Delta E_{int.} \\ \Delta E_{def.} &= (E^{complex \ geom.}_{B^{X_1,Y_1}_{39}} - E^{eq.geom.}_{B^{X_1,Y_1}_{39}}) + (E^{complex \ geom.}_{FLi^{X_2,Y_2}_2} - E^{eq.geom.}_{FLi^{X_2,Y_2}_2}) \end{split}$$

Encapsulation energy:

$${}^{3}(A@1) = E(FLi_{2}@B_{39})^{0,3} - (E_{B_{39}^{0,2}}^{idivid.} + E_{FLi_{2}^{0,2}}^{idivid.})$$
(E.1)

$${}^{2}(B@1)^{+} = E(FLi_{2}@B_{39})^{1,2} - (E_{B_{39}^{0,2}}^{idivid.} + E_{FLi_{2}^{1,1}}^{idivid.})$$
(E.2)

$${}^{2}(A@2)^{\cdot} = E(FLi_{2}@B_{39})^{-1,2} - (E_{B_{39}^{-1,1}}^{idivid.} + E_{FLi_{2}^{0,2}}^{idivid.})$$
(E.3)

¹(B@2) =
$$E(FLi_2@B_{39})^{0,1} - (E_{B_{39}^{-1,1}}^{idivid.} + E_{FLi_2^{1,1}}^{idivid.})$$
 (E.4)

Deformation energy:

$$\begin{aligned} & \text{Fragment 1 (F1)} & \text{Fragment 2 (F2)} \\ ^{3}(A@1) &= (E_{B_{39}^{0,2}}^{complex geom.} - E_{B_{39}^{0,2}}^{eq.geom.}) + (E_{FLi_{2}^{0,2}}^{complex geom.} - E_{FLi_{2}^{0,2}}^{eq.geom.}) & \text{(D.1)} \\ ^{2}(B@1)^{+} &= (E_{B_{39}^{0,2}}^{complex geom.} - E_{B_{39}^{0,2}}^{eq.geom.}) + (E_{FLi_{2}^{1,1}}^{complex geom.} - E_{FLi_{2}^{1,1}}^{eq.geom.}) & \text{(D.2)} \\ ^{2}(A@2)^{\cdot} &= (E_{B_{39}^{-1,1}}^{complex geom.} - E_{B_{39}^{-1,1}}^{eq.geom.}) + (E_{FLi_{2}^{0,2}}^{complex geom.} - E_{FLi_{2}^{0,2}}^{eq.geom.}) & \text{(D.3)} \\ ^{1}(B@2) &= (E_{B_{39}^{-1,1}}^{complex geom.} - E_{B_{39}^{-1,1}}^{eq.geom.}) + (E_{FLi_{2}^{1,1}}^{complex geom.} - E_{FLi_{2}^{1,1}}^{eq.geom.}) & \text{(D.4)} \end{aligned}$$

^a $X_{i\nu}Y_i$ charge and multiplicity for denoted species.

Cartesian coordinates for studied molecules.

¹(B@2). Initial geometry 1.

¹(B@2). Initial geometry 2.

Atom	Х	Y	Z	Atom	Х	Y	Z
В	-2.6897320	-1.7700300	0.9193270	В	-2.6897320	-1.7700300	-1.0742112
В	0.8944390	-2.5253050	-1.4310370	В	0.8944390	-2.5253050	1.3098481
В	-1.1919380	-2.3111180	1.3058420	В	-1.1919380	-2.3111180	-0.073991
В	2.0753630	2.2951180	-1.0507580	В	2.0753630	2.2951180	0.9193270
В	-0.5151740	2.8261740	-0.0405680	В	-0.5151740	2.8261740	-1.4310370
В	-2.7913240	-0.1524600	-1.8627840	В	-2.7913240	-0.1524600	1.3058420
В	-0.8961000	0.0044470	3.0548490	В	-0.8961000	0.0044470	-1.0507580
В	2.8944110	-1.0705780	1.4058360	В	2.8944110	-1.0705780	-0.0405680
В	-0.2141380	-1.3804670	2.4524380	В	-0.2141380	-1.3804670	-1.8627840
В	0.2475010	-0.0182730	-3.0630130	В	0.2475010	-0.0182730	3.0548490
В	1.4161140	-0.9278650	-2.4215780	В	1.4161140	-0.9278650	1.4058360
В	2.9846400	0.8702570	-0.7749930	В	2.9846400	0.8702570	2.4524380
В	0.5544900	2.5487410	-1.5063470	В	0.5544900	2.5487410	-3.0630130
В	-3.0671690	-0.1883940	1.0370200	В	-3.0671690	-0.1883940	-2.4215780
В	-1.0557490	2.6076150	-1.5919910	В	-1.0557490	2.6076150	-0.7749930
В	2.8571470	-0.4088930	-1.7746780	В	2.8571470	-0.4088930	-1.5063470
В	-1.8006990	-2.3792630	-0.3333360	В	-1.8006990	-2.3792630	1.0370200
В	-0.7115580	-2.7448870	-1.5075150	В	-0.7115580	-2.7448870	-1.5919910
В	-0.2185720	-1.4549610	-2.4422780	В	-0.2185720	-1.4549610	-1.7746780
В	-2.9818350	-1.0631010	-0.5334410	В	-2.9818350	-1.0631010	-0.3333360
В	-1.3262570	-0.0959930	-2.5936640	В	-1.3262570	-0.0959930	-1.5075150
В	3.1684590	-0.8355090	-0.1941230	В	3.1684590	-0.8355090	-2.4422780
В	2.3732730	-1.8690820	-1.3716770	В	2.3732730	-1.8690820	-0.5334410
В	-0.3583070	1.3558570	-2.4155000	В	-0.3583070	1.3558570	-2.5936640
В	-2.0360280	1.3154070	-1.7989340	В	-2.0360280	1.3154070	-0.1941230
В	-2.0204900	0.7363940	2.1277630	В	-2.0204900	0.7363940	-1.3716770
В	1.4853580	-1.5541080	2.1840160	В	1.4853580	-1.5541080	-2.4155000
В	-0.1180350	-2.8648970	0.0320650	В	-0.1180350	-2.8648970	-1.7989340
В	-3.1139450	0.7216480	-0.5132660	В	-3.1139450	0.7216480	2.1277630
В	0.4183390	-2.6229060	1.5726860	В	0.4183390	-2.6229060	2.1840160
В	0.0320040	2.7393620	1.4995420	В	0.0320040	2.7393620	0.0320650
В	-2.9151870	1.4428740	0.9365020	В	-2.9151870	1.4428740	-0.5132660
В	-1.5069310	2.2174110	1.2883580	В	-1.5069310	2.2174110	1.5726860
В	2.9942290	0.5393030	0.9763880	В	2.9942290	0.5393030	1.4995420
В	2.2147420	-0.0285680	2.4041540	В	2.2147420	-0.0285680	0.9365020
В	0.7029000	0.1278880	2.9196990	В	0.7029000	0.1278880	1.2883580
В	2.7012430	2.0219680	0.3808090	В	2.7012430	2.0219680	0.9763880
В	-0.3729360	1.4124100	2.3535780	В	-0.3729360	1.4124100	2.4041540
В	1.1643040	2.6514700	0.3490230	В	1.1643040	2.6514700	2.9196990
Li	0.8235253	-1.1920088	-0.5834768	Li	0.2183715	-0.9458737	0.3808090
Li	-0.8901713	0.0664656	0.8123548	Li	-0.2526025	-0.1953373	2.3535780
F	0.4395780	0.2729991	-0.0672329	F	0.4071629	0.2886670	0.3490230

¹(B@2). Initial geometry 3.

¹(B@2). Initial geometry 4.

Atom	Х	Y	Z	Atom	Х	Y	Z
В	-2.6897320	-1.7700300	0.9193270	В	-2.6897320	-1.7700300	0.9193270
В	0.8944390	-2.5253050	-1.4310370	В	0.8944390	-2.5253050	-1.4310370
В	-1.1919380	-2.3111180	1.3058420	В	-1.1919380	-2.3111180	1.3058420
В	2.0753630	2.2951180	-1.0507580	В	2.0753630	2.2951180	-1.0507580
В	-0.5151740	2.8261740	-0.0405680	В	-0.5151740	2.8261740	-0.0405680
В	-2.7913240	-0.1524600	-1.8627840	В	-2.7913240	-0.1524600	-1.8627840
В	-0.8961000	0.0044470	3.0548490	В	-0.8961000	0.0044470	3.0548490
В	2.8944110	-1.0705780	1.4058360	В	2.8944110	-1.0705780	1.4058360
В	-0.2141380	-1.3804670	2.4524380	В	-0.2141380	-1.3804670	2.4524380
В	0.2475010	-0.0182730	-3.0630130	В	0.2475010	-0.0182730	-3.0630130
В	1.4161140	-0.9278650	-2.4215780	В	1.4161140	-0.9278650	-2.4215780
В	2.9846400	0.8702570	-0.7749930	В	2.9846400	0.8702570	-0.7749930
В	0.5544900	2.5487410	-1.5063470	В	0.5544900	2.5487410	-1.5063470
В	-3.0671690	-0.1883940	1.0370200	В	-3.0671690	-0.1883940	1.0370200
В	-1.0557490	2.6076150	-1.5919910	В	-1.0557490	2.6076150	-1.5919910
В	2.8571470	-0.4088930	-1.7746780	В	2.8571470	-0.4088930	-1.7746780
В	-1.8006990	-2.3792630	-0.3333360	В	-1.8006990	-2.3792630	-0.3333360
В	-0.7115580	-2.7448870	-1.5075150	В	-0.7115580	-2.7448870	-1.5075150
В	-0.2185720	-1.4549610	-2.4422780	В	-0.2185720	-1.4549610	-2.4422780
В	-2.9818350	-1.0631010	-0.5334410	В	-2.9818350	-1.0631010	-0.5334410
В	-1.3262570	-0.0959930	-2.5936640	В	-1.3262570	-0.0959930	-2.5936640
В	3.1684590	-0.8355090	-0.1941230	В	3.1684590	-0.8355090	-0.1941230
В	2.3732730	-1.8690820	-1.3716770	В	2.3732730	-1.8690820	-1.3716770
В	-0.3583070	1.3558570	-2.4155000	В	-0.3583070	1.3558570	-2.4155000
В	-2.0360280	1.3154070	-1.7989340	В	-2.0360280	1.3154070	-1.7989340
В	-2.0204900	0.7363940	2.1277630	В	-2.0204900	0.7363940	2.1277630
В	1.4853580	-1.5541080	2.1840160	В	1.4853580	-1.5541080	2.1840160
В	-0.1180350	-2.8648970	0.0320650	В	-0.1180350	-2.8648970	0.0320650
В	-3.1139450	0.7216480	-0.5132660	В	-3.1139450	0.7216480	-0.5132660
В	0.4183390	-2.6229060	1.5726860	В	0.4183390	-2.6229060	1.5726860
В	0.0320040	2.7393620	1.4995420	В	0.0320040	2.7393620	1.4995420
В	-2.9151870	1.4428740	0.9365020	В	-2.9151870	1.4428740	0.9365020
В	-1.5069310	2.2174110	1.2883580	В	-1.5069310	2.2174110	1.2883580
В	2.9942290	0.5393030	0.9763880	В	2.9942290	0.5393030	0.9763880
В	2.2147420	-0.0285680	2.4041540	В	2.2147420	-0.0285680	2.4041540
В	0.7029000	0.1278880	2.9196990	В	0.7029000	0.1278880	2.9196990
В	2.7012430	2.0219680	0.3808090	В	2.7012430	2.0219680	0.3808090
В	-0.3729360	1.4124100	2.3535780	В	-0.3729360	1.4124100	2.3535780
В	1.1643040	2.6514700	0.3490230	В	1.1643040	2.6514700	0.3490230
Li	-0.9131726	-0.3218561	-0.7470471	Li	-1.0905549	-0.7262039	0.2729601
Li	0.8747393	-0.8147442	0.9934392	Li	1.4217568	-0.4749200	-0.0336449
F	0.4113652	0.2840563	-0.0847471	F	0.0417301	0.3485800	-0.0776702

¹(B@2). Initial geometry 5.

¹(B@2). Initial geometry 6.

Atom	Х	Y	Z	Atom	Х	Y	Z
В	-2.6897320	-1.7700300	0.9193270	В	-2.6897320	-1.7700300	0.9193270
В	0.8944390	-2.5253050	-1.4310370	В	0.8944390	-2.5253050	-1.4310370
В	-1.1919380	-2.3111180	1.3058420	В	-1.1919380	-2.3111180	1.3058420
В	2.0753630	2.2951180	-1.0507580	В	2.0753630	2.2951180	-1.0507580
В	-0.5151740	2.8261740	-0.0405680	В	-0.5151740	2.8261740	-0.0405680
В	-2.7913240	-0.1524600	-1.8627840	В	-2.7913240	-0.1524600	-1.8627840
В	-0.8961000	0.0044470	3.0548490	В	-0.8961000	0.0044470	3.0548490
В	2.8944110	-1.0705780	1.4058360	В	2.8944110	-1.0705780	1.4058360
В	-0.2141380	-1.3804670	2.4524380	В	-0.2141380	-1.3804670	2.4524380
В	0.2475010	-0.0182730	-3.0630130	В	0.2475010	-0.0182730	-3.0630130
В	1.4161140	-0.9278650	-2.4215780	В	1.4161140	-0.9278650	-2.4215780
В	2.9846400	0.8702570	-0.7749930	В	2.9846400	0.8702570	-0.7749930
В	0.5544900	2.5487410	-1.5063470	В	0.5544900	2.5487410	-1.5063470
В	-3.0671690	-0.1883940	1.0370200	В	-3.0671690	-0.1883940	1.0370200
В	-1.0557490	2.6076150	-1.5919910	В	-1.0557490	2.6076150	-1.5919910
В	2.8571470	-0.4088930	-1.7746780	В	2.8571470	-0.4088930	-1.7746780
В	-1.8006990	-2.3792630	-0.3333360	В	-1.8006990	-2.3792630	-0.3333360
В	-0.7115580	-2.7448870	-1.5075150	В	-0.7115580	-2.7448870	-1.5075150
В	-0.2185720	-1.4549610	-2.4422780	В	-0.2185720	-1.4549610	-2.4422780
В	-2.9818350	-1.0631010	-0.5334410	В	-2.9818350	-1.0631010	-0.5334410
В	-1.3262570	-0.0959930	-2.5936640	В	-1.3262570	-0.0959930	-2.5936640
В	3.1684590	-0.8355090	-0.1941230	В	3.1684590	-0.8355090	-0.1941230
В	2.3732730	-1.8690820	-1.3716770	В	2.3732730	-1.8690820	-1.3716770
В	-0.3583070	1.3558570	-2.4155000	В	-0.3583070	1.3558570	-2.4155000
В	-2.0360280	1.3154070	-1.7989340	В	-2.0360280	1.3154070	-1.7989340
В	-2.0204900	0.7363940	2.1277630	В	-2.0204900	0.7363940	2.1277630
В	1.4853580	-1.5541080	2.1840160	В	1.4853580	-1.5541080	2.1840160
В	-0.1180350	-2.8648970	0.0320650	В	-0.1180350	-2.8648970	0.0320650
В	-3.1139450	0.7216480	-0.5132660	В	-3.1139450	0.7216480	-0.5132660
В	0.4183390	-2.6229060	1.5726860	В	0.4183390	-2.6229060	1.5726860
В	0.0320040	2.7393620	1.4995420	В	0.0320040	2.7393620	1.4995420
В	-2.9151870	1.4428740	0.9365020	В	-2.9151870	1.4428740	0.9365020
В	-1.5069310	2.2174110	1.2883580	В	-1.5069310	2.2174110	1.2883580
В	2.9942290	0.5393030	0.9763880	В	2.9942290	0.5393030	0.9763880
В	2.2147420	-0.0285680	2.4041540	В	2.2147420	-0.0285680	2.4041540
В	0.7029000	0.1278880	2.9196990	В	0.7029000	0.1278880	2.9196990
В	2.7012430	2.0219680	0.3808090	В	2.7012430	2.0219680	0.3808090
В	-0.3729360	1.4124100	2.3535780	В	-0.3729360	1.4124100	2.3535780
В	1.1643040	2.6514700	0.3490230	В	1.1643040	2.6514700	0.3490230
Li	0.1810751	-1.5716354	0.2957859	Li	1.3931423	-0.6143947	0.0364726
Li	0.7045984	0.8672230	-0.2009570	Li	-0.8336948	0.6138137	-0.0030286
F	-0.5127415	-0.1481316	0.0668161	F	-0.1865155	-0.8519630	0.1282010

¹(B@2). Initial geometry 7.

¹(B@2). Initial geometry 8.

Atom	Х	Y	Z	Atom	Х	Y	Z
В	-2.6897320	-1.7700300	0.9193270	В	-2.6897320	-1.7700300	0.9193270
В	0.8944390	-2.5253050	-1.4310370	В	0.8944390	-2.5253050	-1.4310370
В	-1.1919380	-2.3111180	1.3058420	В	-1.1919380	-2.3111180	1.3058420
В	2.0753630	2.2951180	-1.0507580	В	2.0753630	2.2951180	-1.0507580
В	-0.5151740	2.8261740	-0.0405680	В	-0.5151740	2.8261740	-0.0405680
В	-2.7913240	-0.1524600	-1.8627840	В	-2.7913240	-0.1524600	-1.8627840
В	-0.8961000	0.0044470	3.0548490	В	-0.8961000	0.0044470	3.0548490
В	2.8944110	-1.0705780	1.4058360	В	2.8944110	-1.0705780	1.4058360
В	-0.2141380	-1.3804670	2.4524380	В	-0.2141380	-1.3804670	2.4524380
В	0.2475010	-0.0182730	-3.0630130	В	0.2475010	-0.0182730	-3.0630130
В	1.4161140	-0.9278650	-2.4215780	В	1.4161140	-0.9278650	-2.4215780
В	2.9846400	0.8702570	-0.7749930	В	2.9846400	0.8702570	-0.7749930
В	0.5544900	2.5487410	-1.5063470	В	0.5544900	2.5487410	-1.5063470
В	-3.0671690	-0.1883940	1.0370200	В	-3.0671690	-0.1883940	1.0370200
В	-1.0557490	2.6076150	-1.5919910	В	-1.0557490	2.6076150	-1.5919910
В	2.8571470	-0.4088930	-1.7746780	В	2.8571470	-0.4088930	-1.7746780
В	-1.8006990	-2.3792630	-0.3333360	В	-1.8006990	-2.3792630	-0.3333360
В	-0.7115580	-2.7448870	-1.5075150	В	-0.7115580	-2.7448870	-1.5075150
В	-0.2185720	-1.4549610	-2.4422780	В	-0.2185720	-1.4549610	-2.4422780
В	-2.9818350	-1.0631010	-0.5334410	В	-2.9818350	-1.0631010	-0.5334410
В	-1.3262570	-0.0959930	-2.5936640	В	-1.3262570	-0.0959930	-2.5936640
В	3.1684590	-0.8355090	-0.1941230	В	3.1684590	-0.8355090	-0.1941230
В	2.3732730	-1.8690820	-1.3716770	В	2.3732730	-1.8690820	-1.3716770
В	-0.3583070	1.3558570	-2.4155000	В	-0.3583070	1.3558570	-2.4155000
В	-2.0360280	1.3154070	-1.7989340	В	-2.0360280	1.3154070	-1.7989340
В	-2.0204900	0.7363940	2.1277630	В	-2.0204900	0.7363940	2.1277630
В	1.4853580	-1.5541080	2.1840160	В	1.4853580	-1.5541080	2.1840160
В	-0.1180350	-2.8648970	0.0320650	В	-0.1180350	-2.8648970	0.0320650
В	-3.1139450	0.7216480	-0.5132660	В	-3.1139450	0.7216480	-0.5132660
В	0.4183390	-2.6229060	1.5726860	В	0.4183390	-2.6229060	1.5726860
В	0.0320040	2.7393620	1.4995420	В	0.0320040	2.7393620	1.4995420
В	-2.9151870	1.4428740	0.9365020	В	-2.9151870	1.4428740	0.9365020
В	-1.5069310	2.2174110	1.2883580	В	-1.5069310	2.2174110	1.2883580
В	2.9942290	0.5393030	0.9763880	В	2.9942290	0.5393030	0.9763880
В	2.2147420	-0.0285680	2.4041540	В	2.2147420	-0.0285680	2.4041540
В	0.7029000	0.1278880	2.9196990	В	0.7029000	0.1278880	2.9196990
В	2.7012430	2.0219680	0.3808090	В	2.7012430	2.0219680	0.3808090
В	-0.3729360	1.4124100	2.3535780	В	-0.3729360	1.4124100	2.3535780
В	1.1643040	2.6514700	0.3490230	В	1.1643040	2.6514700	0.3490230
Li	0.0551788	1.0099198	-0.1456199	Li	-0.9611751	0.3864994	0.3558513
Li	-0.4434801	-1.4458593	0.2895218	Li	1.2538178	-0.8629402	0.3954373
F	0.7612333	-0.4166044	0.0177431	F	0.0802893	-0.3761032	-0.5896436

¹(B@2). Initial geometry 9.

¹(B@2). Initial geometry 10.

Atom	Х	Y	Z	Atom	Х	Y	Z
В	-2.6897320	-1.7700300	0.9193270	В	-2.6897320	-1.7700300	0.9193270
В	0.8944390	-2.5253050	-1.4310370	В	0.8944390	-2.5253050	-1.4310370
В	-1.1919380	-2.3111180	1.3058420	В	-1.1919380	-2.3111180	1.3058420
В	2.0753630	2.2951180	-1.0507580	В	2.0753630	2.2951180	-1.0507580
В	-0.5151740	2.8261740	-0.0405680	В	-0.5151740	2.8261740	-0.0405680
В	-2.7913240	-0.1524600	-1.8627840	В	-2.7913240	-0.1524600	-1.8627840
В	-0.8961000	0.0044470	3.0548490	В	-0.8961000	0.0044470	3.0548490
В	2.8944110	-1.0705780	1.4058360	В	2.8944110	-1.0705780	1.4058360
В	-0.2141380	-1.3804670	2.4524380	В	-0.2141380	-1.3804670	2.4524380
В	0.2475010	-0.0182730	-3.0630130	В	0.2475010	-0.0182730	-3.0630130
В	1.4161140	-0.9278650	-2.4215780	В	1.4161140	-0.9278650	-2.4215780
В	2.9846400	0.8702570	-0.7749930	В	2.9846400	0.8702570	-0.7749930
В	0.5544900	2.5487410	-1.5063470	В	0.5544900	2.5487410	-1.5063470
В	-3.0671690	-0.1883940	1.0370200	В	-3.0671690	-0.1883940	1.0370200
В	-1.0557490	2.6076150	-1.5919910	В	-1.0557490	2.6076150	-1.5919910
В	2.8571470	-0.4088930	-1.7746780	В	2.8571470	-0.4088930	-1.7746780
В	-1.8006990	-2.3792630	-0.3333360	В	-1.8006990	-2.3792630	-0.3333360
В	-0.7115580	-2.7448870	-1.5075150	В	-0.7115580	-2.7448870	-1.5075150
В	-0.2185720	-1.4549610	-2.4422780	В	-0.2185720	-1.4549610	-2.4422780
В	-2.9818350	-1.0631010	-0.5334410	В	-2.9818350	-1.0631010	-0.5334410
В	-1.3262570	-0.0959930	-2.5936640	В	-1.3262570	-0.0959930	-2.5936640
В	3.1684590	-0.8355090	-0.1941230	В	3.1684590	-0.8355090	-0.1941230
В	2.3732730	-1.8690820	-1.3716770	В	2.3732730	-1.8690820	-1.3716770
В	-0.3583070	1.3558570	-2.4155000	В	-0.3583070	1.3558570	-2.4155000
В	-2.0360280	1.3154070	-1.7989340	В	-2.0360280	1.3154070	-1.7989340
В	-2.0204900	0.7363940	2.1277630	В	-2.0204900	0.7363940	2.1277630
В	1.4853580	-1.5541080	2.1840160	В	1.4853580	-1.5541080	2.1840160
В	-0.1180350	-2.8648970	0.0320650	В	-0.1180350	-2.8648970	0.0320650
В	-3.1139450	0.7216480	-0.5132660	В	-3.1139450	0.7216480	-0.5132660
В	0.4183390	-2.6229060	1.5726860	В	0.4183390	-2.6229060	1.5726860
В	0.0320040	2.7393620	1.4995420	В	0.0320040	2.7393620	1.4995420
В	-2.9151870	1.4428740	0.9365020	В	-2.9151870	1.4428740	0.9365020
В	-1.5069310	2.2174110	1.2883580	В	-1.5069310	2.2174110	1.2883580
В	2.9942290	0.5393030	0.9763880	В	2.9942290	0.5393030	0.9763880
В	2.2147420	-0.0285680	2.4041540	В	2.2147420	-0.0285680	2.4041540
В	0.7029000	0.1278880	2.9196990	В	0.7029000	0.1278880	2.9196990
В	2.7012430	2.0219680	0.3808090	В	2.7012430	2.0219680	0.3808090
В	-0.3729360	1.4124100	2.3535780	В	-0.3729360	1.4124100	2.3535780
В	1.1643040	2.6514700	0.3490230	В	1.1643040	2.6514700	0.3490230
Li	-0.8318562	0.6120463	0.0962919	Li	-0.9506460	0.4008168	-0.2535648
Li	1.3910825	-0.6229550	0.1429326	Li	1.2645026	-0.8487784	-0.2756650
F	-0.1862942	-0.8416352	-0.0775795	F	0.0590754	-0.4045824	0.6908748

¹(B@2). Initial geometry 11.

¹(B@2). Initial geometry 12.

Atom	Х	Y	Z	Atom	Х	Y	Z
В	-2.6897320	-1.7700300	0.9193270	В	-2.6897320	-1.7700300	0.9193270
В	0.8944390	-2.5253050	-1.4310370	В	0.8944390	-2.5253050	-1.4310370
В	-1.1919380	-2.3111180	1.3058420	В	-1.1919380	-2.3111180	1.3058420
В	2.0753630	2.2951180	-1.0507580	В	2.0753630	2.2951180	-1.0507580
В	-0.5151740	2.8261740	-0.0405680	В	-0.5151740	2.8261740	-0.0405680
В	-2.7913240	-0.1524600	-1.8627840	В	-2.7913240	-0.1524600	-1.8627840
В	-0.8961000	0.0044470	3.0548490	В	-0.8961000	0.0044470	3.0548490
В	2.8944110	-1.0705780	1.4058360	В	2.8944110	-1.0705780	1.4058360
В	-0.2141380	-1.3804670	2.4524380	В	-0.2141380	-1.3804670	2.4524380
В	0.2475010	-0.0182730	-3.0630130	В	0.2475010	-0.0182730	-3.0630130
В	1.4161140	-0.9278650	-2.4215780	В	1.4161140	-0.9278650	-2.4215780
В	2.9846400	0.8702570	-0.7749930	В	2.9846400	0.8702570	-0.7749930
В	0.5544900	2.5487410	-1.5063470	В	0.5544900	2.5487410	-1.5063470
В	-3.0671690	-0.1883940	1.0370200	В	-3.0671690	-0.1883940	1.0370200
В	-1.0557490	2.6076150	-1.5919910	В	-1.0557490	2.6076150	-1.5919910
В	2.8571470	-0.4088930	-1.7746780	В	2.8571470	-0.4088930	-1.7746780
В	-1.8006990	-2.3792630	-0.3333360	В	-1.8006990	-2.3792630	-0.3333360
В	-0.7115580	-2.7448870	-1.5075150	В	-0.7115580	-2.7448870	-1.5075150
В	-0.2185720	-1.4549610	-2.4422780	В	-0.2185720	-1.4549610	-2.4422780
В	-2.9818350	-1.0631010	-0.5334410	В	-2.9818350	-1.0631010	-0.5334410
В	-1.3262570	-0.0959930	-2.5936640	В	-1.3262570	-0.0959930	-2.5936640
В	3.1684590	-0.8355090	-0.1941230	В	3.1684590	-0.8355090	-0.1941230
В	2.3732730	-1.8690820	-1.3716770	В	2.3732730	-1.8690820	-1.3716770
В	-0.3583070	1.3558570	-2.4155000	В	-0.3583070	1.3558570	-2.4155000
В	-2.0360280	1.3154070	-1.7989340	В	-2.0360280	1.3154070	-1.7989340
В	-2.0204900	0.7363940	2.1277630	В	-2.0204900	0.7363940	2.1277630
В	1.4853580	-1.5541080	2.1840160	В	1.4853580	-1.5541080	2.1840160
В	-0.1180350	-2.8648970	0.0320650	В	-0.1180350	-2.8648970	0.0320650
В	-3.1139450	0.7216480	-0.5132660	В	-3.1139450	0.7216480	-0.5132660
В	0.4183390	-2.6229060	1.5726860	В	0.4183390	-2.6229060	1.5726860
В	0.0320040	2.7393620	1.4995420	В	0.0320040	2.7393620	1.4995420
В	-2.9151870	1.4428740	0.9365020	В	-2.9151870	1.4428740	0.9365020
В	-1.5069310	2.2174110	1.2883580	В	-1.5069310	2.2174110	1.2883580
В	2.9942290	0.5393030	0.9763880	В	2.9942290	0.5393030	0.9763880
В	2.2147420	-0.0285680	2.4041540	В	2.2147420	-0.0285680	2.4041540
В	0.7029000	0.1278880	2.9196990	В	0.7029000	0.1278880	2.9196990
В	2.7012430	2.0219680	0.3808090	В	2.7012430	2.0219680	0.3808090
В	-0.3729360	1.4124100	2.3535780	В	-0.3729360	1.4124100	2.3535780
В	1.1643040	2.6514700	0.3490230	В	1.1643040	2.6514700	0.3490230
Li	1.0936308	-1.1372276	-0.1741715	Li	1.0964720	-1.1522860	0.1973192
Li	-1.1161701	0.1200832	-0.1048198	Li	-1.1106362	0.1094718	0.2714869
F	0.3954713	0.1646003	0.4406364	F	0.3870961	0.1902702	-0.3071611

¹(B@2) Conformer 1.

¹(B@2) Conformer 2.

PBE1PBE/6	5-31+g(d)			PBE1PBE	E/6-31+g(d)		
Atom	Х	Y	Z	Atom	Х	Y	Z
В	-2.68592500	-1.7678940	0.9354790	В	-2.7248360	-1.8088340	0.9153850
В	0.87978000	-2.5232180	-1.4430310	В	0.8530680	-2.5581800	-1.3819130
В	-1.18627300	-2.3120990	1.3102530	В	-1.2437790	-2.3397430	1.3313170
В	2.07193100	2.2942480	-1.0615300	В	2.0608360	2.3461850	-1.0292750
В	-0.51122700	2.8277860	-0.0313310	В	-0.5293360	2.8352420	-0.0261850
В	-2.80498300	-0.1444030	-1.8425100	В	-2.8079270	-0.1212400	-1.8524560
В	-0.87417100	-0.0007230	3.0615860	В	-0.9373420	-0.0260050	3.1118540
В	2.90278700	-1.0782720	1.3825530	В	2.8090550	-1.1036870	1.4320220
В	-0.19910300	-1.3854720	2.4516040	В	-0.2621800	-1.4267170	2.5049410
В	0.22486600	-0.0118810	-3.0662260	В	0.2282100	-0.0031880	-3.0576510
В	1.39743100	-0.9226830	-2.4339180	В	1.4027090	-0.9524630	-2.4747810
В	2.98048900	0.8668810	-0.7952850	В	2.9770510	0.8832570	-0.7415850
В	0.54801400	2.5507500	-1.5054240	В	0.5503050	2.6221070	-1.5394760
В	-3.06022800	-0.1857570	1.0590530	В	-2.9882230	-0.2110550	1.0322010
В	-1.06295900	2.6129450	-1.5791750	В	-1.0660260	2.6253510	-1.5976410
В	2.84554300	-0.4102180	-1.7967760	В	2.7863400	-0.3910200	-1.7445010
В	-1.80707200	-2.3754510	-0.3248650	В	-1.8329760	-2.4152730	-0.3080140
В	-0.72674800	-2.7397030	-1.5071470	В	-0.7387920	-2.7501980	-1.4847920
В	-0.23797800	-1.4486040	-2.4426730	В	-0.2338480	-1.4569990	-2.4212130
В	-2.98814900	-1.0573480	-0.5134060	В	-2.9020630	-1.0452360	-0.5230480
В	-1.34525100	-0.0883260	-2.5842710	В	-1.3470630	-0.0804450	-2.5473260
В	3.16441700	-0.8396440	-0.2184560	В	3.0674160	-0.8247500	-0.1577320
В	2.35986900	-1.8696100	-1.3932980	В	2.2957410	-1.8555510	-1.3297570
В	-0.37387900	1.3614530	-2.4101070	В	-0.4092260	1.4231030	-2.5234870
В	-2.04686200	1.3225350	-1.7807870	В	-2.0574400	1.3298850	-1.8235070
В	-2.00383000	0.7352580	2.1441110	В	-2.0445710	0.7193400	2.1649910
В	1.49813100	-1.5602760	2.1700980	В	1.4329940	-1.6202860	2.2319360
В	-0.12189700	-2.8640990	0.0277800	В	-0.1633000	-2.9173740	0.0661900
В	-3.11676000	0.7274340	-0.4888940	В	-3.0050830	0.7249620	-0.4643580
В	0.42555500	-2.6274350	1.5650280	В	0.3580590	-2.6797640	1.6215890
В	0.04778100	2.7354170	1.5040790	В	0.0188370	2.6825200	1.5052010
В	-2.90608000	1.4455230	0.9609180	В	-2.9445780	1.4210640	0.9967150
В	-1.49340400	2.2162840	1.3032490	В	-1.5132530	2.1391630	1.2698790
В	3.00182500	0.5329370	0.9561970	В	2.9304120	0.5060220	1.0161030
В	2.23252800	-0.0373280	2.3882250	В	2.1349900	-0.0641590	2.4356290
В	0.72423200	0.1194860	2.9141700	В	0.6504550	0.0987630	3.0037370
В	2.70741500	2.0169500	0.3649760	В	2.6198390	1.9971210	0.4292000
В	-0.35308300	1.4075610	2.3585460	В	-0.3875880	1.3598920	2.3745840
В	1.17114900	2.6485910	0.3449230	В	1.1327630	2.7177420	0.3495830
Li	1.11609500	-1.1331600	0.1700520	Li	0.9084810	-1.1085560	0.2965560
Li	-1.16044300	-0.0093680	0.0508600	Li	0.8039360	0.5994520	-1.0267820
F	0.41625000	0.2860720	-0.0645710	F	-0.2322790	0.0446940	0.1059260

¹(B@2) Conformer 3.

¹(B@2) Conformer 4.

PBE1PBE/6-3	BE1PBE/6-31+g(d) PBE1PBE/6-31+g(d)						
Atom	Х	Υ	Z	Atom	Х	Y	Z
В	-2.6725890	-1.8260930	0.8980560	В	-2.6420680	-1.8198690	0.9233050
В	0.9095080	-2.5659910	-1.3905520	В	0.8847620	-2.5378520	-1.3491370
В	-1.1770370	-2.3437690	1.3140080	В	-1.2006320	-2.4580650	1.3545580
В	2.0506790	2.1848860	-1.0365300	В	2.1239460	2.2786630	-1.0531150
В	-0.5159990	2.9286510	-0.0303130	В	-0.4634710	2.9718240	-0.0292290
В	-2.8149260	-0.1590570	-1.8886920	В	-2.7648470	-0.1607160	-1.8802660
В	-0.8701780	-0.0267240	3.0481720	В	-0.8537390	-0.0206320	3.0413230
В	2.9432500	-1.1294090	1.4034220	В	2.9403930	-1.0940510	1.4260750
В	-0.1828750	-1.4201180	2.4457960	В	-0.2181810	-1.4291350	2.4259650
В	0.2524370	-0.0321740	-3.0211420	В	0.2764310	-0.0422590	-3.0220380
В	1.4312470	-0.9443800	-2.4055070	В	1.4153850	-0.9592090	-2.3449890
В	3.0424250	0.8234620	-0.7463140	В	2.9809220	0.8259220	-0.7770220
В	0.5396610	2.4910690	-1.4787340	В	0.5951830	2.5343940	-1.4815950
В	-2.9492130	-0.2242710	1.0027820	В	-2.9077800	-0.2025280	1.0060200
В	-1.0869050	2.5935230	-1.5789840	В	-1.0317310	2.6070260	-1.5760130
В	2.8671730	-0.4367450	-1.7524870	В	2.8751830	-0.4673480	-1.7489900
В	-1.7802630	-2.4271190	-0.3368960	В	-1.8492510	-2.5635460	-0.3125120
В	-0.6823840	-2.7929630	-1.4973630	В	-0.7226380	-2.7986780	-1.4794190
В	-0.2068930	-1.4695130	-2.3853050	В	-0.2043740	-1.4989030	-2.4141290
В	-2.9096730	-1.0817570	-0.5386270	В	-2.8438780	-1.0789200	-0.5369700
В	-1.3383320	-0.1142590	-2.5947680	В	-1.2967140	-0.1140390	-2.5826690
В	3.2630290	-0.8847400	-0.1959280	В	3.1180270	-0.8610290	-0.1627130
В	2.3671500	-1.8894800	-1.3197100	В	2.3613690	-1.8987840	-1.2947890
В	-0.3931250	1.3513950	-2.4367010	В	-0.3417630	1.3619040	-2.4365930
В	-2.1087710	1.3238690	-1.9000880	В	-2.0297390	1.3220690	-1.8691370
В	-2.0081110	0.7342250	2.1464560	В	-1.9512180	0.7536170	2.1290370
В	1.5041260	-1.6099150	2.1090360	В	1.4654170	-1.5313950	2.0500060
В	-0.0816230	-2.8661330	0.0407940	В	-0.1191030	-3.0362820	0.0456800
В	-3.1030620	0.7008780	-0.5185830	В	-3.0007280	0.6982760	-0.5048160
В	0.4221400	-2.6803800	1.5880850	В	0.4229550	-2.6758740	1.5484920
В	0.0330560	2.7188250	1.5047270	В	0.0831380	2.7456990	1.5090500
В	-2.9029860	1.4278680	0.9451740	В	-2.8404890	1.4492040	0.9345040
В	-1.5427420	2.2502390	1.3638060	В	-1.4836500	2.2776400	1.3489020
В	3.0948920	0.4804330	1.0022530	В	3.0084540	0.5169470	0.9892890
В	2.2198320	-0.0708190	2.3663620	В	2.2563730	-0.0626880	2.4075420
В	0.7202280	0.1237420	2.8944720	В	0.7374270	0.0805080	2.8790480
В	2.6387610	1.9274850	0.4232300	В	2.7307810	1.9967870	0.3806390
В	-0.3762860	1.4065960	2.3895000	В	-0.3414360	1.4212050	2.3940120
В	1.1441040	2.6574980	0.3271380	В	1.2002780	2.6719570	0.3273900
Li	-1.0773560	0.9749500	-0.1658480	Li	-0.8261730	0.9775590	-0.1367230
Li	1.2693960	-0.4608310	0.1064450	Li	-0.4712310	-1.0349370	-0.0415320
F	-0.2819820	-0.3278120	0.0394170	F	0.5781930	0.1706800	0.0536200

³(A@1) Conformer 1.

PBF1PBF/6-31+g(d)

³(A@1) Conformer 2.

PBE1PBE/6-31+g(d)			PBE1PBE/6-31+g(d)				
Atom	х	Υ	Z	Atom	Х	Υ	Z
В	-2.6987660	-1.8033920	1.0059200	В	-2.6787160	-1.7668930	0.9367300
В	0.8850420	-2.5644400	-1.3845800	В	0.8581290	-2.4997980	-1.3870040
В	-1.2058630	-2.3632980	1.4149560	В	-1.2131730	-2.3789140	1.3597380
В	2.1009620	2.3191710	-1.1081310	В	2.0514370	2.3254040	-0.9840350
В	-0.6000820	2.8435230	-0.0442670	В	-0.5193190	2.7620040	-0.0347220
В	-2.7744520	-0.2006490	-1.7943360	В	-2.8496420	-0.0894460	-1.8776950
В	-0.8824530	-0.0064970	3.1092270	В	-0.9440230	-0.0396440	3.1066290
В	2.9665470	-1.1260470	1.4235250	В	2.8345220	-1.0624660	1.4355080
В	-0.2289780	-1.4180810	2.5092200	В	-0.2262110	-1.4195690	2.4832380
В	0.2454640	-0.0710850	-3.0381860	В	0.1963700	-0.0578160	-3.0342530
В	1.4615670	-1.0019450	-2.4877160	В	1.3484750	-1.0384730	-2.4026860
В	3.1204960	0.8391230	-0.7941190	В	2.9533190	0.8777510	-0.7572800
В	0.5608230	2.5098020	-1.5012980	В	0.5458980	2.5978180	-1.5226630
В	-3.0781670	-0.2110320	1.1137370	В	-3.0205150	-0.1875850	1.0081950
В	-1.0982590	2.6122140	-1.5990240	В	-1.0597100	2.6108740	-1.6079230
В	2.8845340	-0.4735780	-1.7635870	В	2.7687770	-0.3730200	-1.7363230
В	-1.8036350	-2.3604360	-0.2660020	В	-1.7789260	-2.3312780	-0.3308080
В	-0.7058000	-2.7551400	-1.4217990	В	-0.7662630	-2.8019150	-1.5224340
В	-0.1819700	-1.4950510	-2.3554180	В	-0.3270640	-1.5153510	-2.4683650
В	-2.9688060	-1.0730190	-0.4411790	В	-2.8986820	-0.9852640	-0.5293920
В	-1.3216510	-0.1493840	-2.5740580	В	-1.3833560	-0.0862490	-2.5605510
В	3.1256750	-0.9417300	-0.1728060	В	3.0764070	-0.7837080	-0.1634720
В	2.3579430	-1.9151430	-1.3384510	В	2.3183250	-1.8818560	-1.3160920
В	-0.3852860	1.3585020	-2.4083530	В	-0.4107860	1.3831160	-2.5209490
В	-2.0125300	1.2529010	-1.6909300	В	-2.0677150	1.3455480	-1.8556720
В	-2.0260840	0.7457530	2.2230350	В	-2.0519480	0.6839930	2.1362150
В	1.4209020	-1.5144940	1.9638720	В	1.4685750	-1.6399770	2.2244460
В	-0.0794690	-2.7318820	0.1124580	В	-0.1527090	-2.8600130	0.0159640
В	-3.1114590	0.6808340	-0.4160320	В	-3.0371780	0.7466820	-0.4813170
В	0.3595630	-2.7028150	1.6866050	В	0.3777410	-2.6745390	1.6154570
В	0.0489700	2.6435050	1.4348380	В	-0.0139370	2.7054250	1.5267230
В	-2.9483590	1.4248730	1.0227460	В	-2.9590890	1.4472930	0.9930540
В	-1.5186790	2.1712900	1.3188440	В	-1.5332980	2.1827930	1.2988590
В	2.9954110	0.4784290	0.9212470	В	2.9762800	0.5556820	1.0655350
В	2.2445310	-0.0601920	2.3531820	В	2.1155250	-0.0486550	2.4250260
В	0.7136770	0.0887610	2.8644010	В	0.6387610	0.0883300	3.0250620
В	2.6673230	1.9347220	0.3405370	В	2.6989600	2.0385450	0.4595210
В	-0.3788140	1.3899830	2.3822700	В	-0.3879380	1.3079860	2.2975990
В	1.1300840	2.6443330	0.2140200	В	1.1488670	2.6584790	0.4282650
Li	1.0662280	0.4894400	-1.0877060	Li	0.9546470	-1.0914380	0.3100570
Li	-1.1395930	0.0518740	0.2074050	Li	0.8183870	0.5687300	-1.0378370
F	0.4431960	-0.2245600	0.2059930	F	-0.2194140	0.0425530	0.1197140

³(A@1) Conformer 3.

PBF1PBF/6-31+g(d)

²(B@1)⁺ Conformer 1.

PBE1PBE/6-31+g(d)			PBE1PE	PBE1PBE/6-31+g(d)			
Atom	х	Υ	Z	Atom	Х	Y	Z
В	-2.6780680	-1.8661470	0.9125450	В	-2.6990190	-1.7705280	0.9350310
В	0.8707010	-2.5070160	-1.3280300	В	0.8763000	-2.4910000	-1.4463290
В	-1.2427920	-2.5008240	1.3536140	В	-1.1986350	-2.3029740	1.3067300
В	2.1558910	2.2918540	-1.0809720	В	2.1207570	2.3116650	-1.0666490
В	-0.4252320	3.0171520	-0.0771340	В	-0.4974720	2.8874100	-0.0147690
В	-2.7640510	-0.1706010	-1.8771790	В	-2.8279080	-0.1627890	-1.8485120
В	-0.8773740	-0.0593950	3.0724400	В	-0.8748590	0.0004820	3.0548660
В	2.9311540	-1.0796030	1.4123430	В	2.9068570	-1.0709280	1.3812250
В	-0.2915080	-1.4905200	2.4931600	В	-0.2131170	-1.3928060	2.4833850
В	0.2604910	-0.0465510	-3.0591830	В	0.2262380	-0.0053310	-3.0621360
В	1.4290540	-0.8914660	-2.3423950	В	1.4032190	-0.9309920	-2.4350480
В	2.9907250	0.8320230	-0.8058780	В	3.0012720	0.8624510	-0.8047430
В	0.6143440	2.5503680	-1.4813170	В	0.5676790	2.5244800	-1.4337140
В	-2.8859730	-0.2350060	0.9901610	В	-3.0589360	-0.1840420	1.0501670
В	-1.0156040	2.6085480	-1.5858220	В	-1.0773640	2.5701000	-1.5177330
В	2.9239330	-0.4726760	-1.7736520	В	2.8582030	-0.4117390	-1.8015360
В	-1.8594420	-2.6050810	-0.3054920	В	-1.8274140	-2.3761510	-0.3253340
В	-0.7211560	-2.7851810	-1.4752950	В	-0.7381240	-2.7212250	-1.5050010
В	-0.1990110	-1.4859280	-2.3908060	В	-0.2402400	-1.4565810	-2.4488080
В	-2.8536360	-1.0966230	-0.5355650	В	-3.0204650	-1.0752060	-0.5152240
В	-1.2916470	-0.1279330	-2.5893610	В	-1.3572490	-0.0902690	-2.5824790
В	3.1317010	-0.8430450	-0.1542690	В	3.1809310	-0.8403350	-0.2211120
В	2.3514320	-1.8645870	-1.2913550	В	2.3664440	-1.8634270	-1.3842450
В	-0.3277660	1.3475720	-2.4072670	В	-0.3849940	1.3385860	-2.4125040
В	-2.0108250	1.3074410	-1.8245720	В	-2.0771480	1.2979710	-1.7865010
В	-1.9267400	0.6874760	2.1025630	В	-1.9957130	0.7394540	2.1093980
В	1.3980070	-1.4292090	2.0274130	В	1.4867760	-1.5187930	2.1703450
В	-0.1434510	-3.0426690	0.0570960	В	-0.1262020	-2.8601340	0.0283030
В	-2.9739760	0.6870380	-0.4901060	В	-3.1277230	0.7181080	-0.4954250
В	0.3867650	-2.6430660	1.5518180	В	0.4173310	-2.6011510	1.5521350
В	0.0720500	2.7232960	1.4643960	В	0.0672600	2.7021390	1.5199130
В	-2.8230560	1.4573420	0.9430970	В	-2.9184070	1.4507860	0.9493580
В	-1.4965460	2.3176540	1.4120210	В	-1.4973770	2.1976210	1.2772710
В	3.0022330	0.5103490	0.9675060	В	3.0385320	0.5349290	0.9515530
В	2.2809340	-0.0514160	2.4514840	В	2.2515230	-0.0146600	2.3782580
В	0.7500410	0.0792880	2.8424250	В	0.7321550	0.1125280	2.8735790
В	2.7273440	1.9933740	0.3619860	В	2.7378840	2.0138020	0.3584310
В	-0.3255570	1.3537030	2.3402610	В	-0.3803770	1.4366040	2.4345270
В	1.2108550	2.6980400	0.2980080	В	1.1752700	2.6015070	0.3191500
Li	-0.7748740	1.0337570	-0.0675300	Li	1.1218800	-1.1026640	0.1554020
Li	-0.5142780	-1.0259270	0.0344320	Li	-1.1592280	-0.0607820	-0.0075380
F	0.5846890	0.1393360	-0.0055280	F	0.4112430	0.3190210	-0.0336270

²(B@1)⁺ Conformer 2.

PBF1PBF/6-31+g(d)

²(B@1)⁺ Conformer 3.

PBE1PBE/6-31+g(d)			PBE1PBE/6-31+g(d)				
Atom	х	Υ	Z	Atom	Х	Υ	Z
В	-2.7258990	-1.8162530	0.9105520	В	-2.6496700	-1.8150370	0.9279780
В	0.8428040	-2.5427330	-1.3860650	В	0.8790780	-2.5535380	-1.3449960
В	-1.2429590	-2.3429620	1.3396840	В	-1.2188260	-2.4693530	1.3516930
В	2.0483700	2.3415440	-1.0136580	В	2.1359700	2.2884960	-1.0589890
В	-0.5200690	2.8082620	-0.0325270	В	-0.4649880	2.9684990	-0.0363610
В	-2.8248640	-0.1271050	-1.8807490	В	-2.7674020	-0.1499500	-1.8897050
В	-0.9302270	-0.0272280	3.1358220	В	-0.8733140	-0.0272310	3.0361400
В	2.8109260	-1.0985050	1.4384370	В	2.9233920	-1.0893610	1.4101200
В	-0.2790590	-1.4387410	2.5286400	В	-0.2518020	-1.4611370	2.4337920
В	0.2119440	-0.0134820	-3.0608070	В	0.2559390	-0.0563730	-3.0207900
В	1.3820210	-0.9560290	-2.4588690	В	1.4216060	-0.9521260	-2.3735760
В	2.9749890	0.8892450	-0.7423880	В	2.9919450	0.8400790	-0.7830810
В	0.5369320	2.6173400	-1.5350900	В	0.5997720	2.5457940	-1.4696610
В	-2.9689220	-0.2358000	0.9892960	В	-2.9311670	-0.1984760	0.9845670
В	-1.0729070	2.6211770	-1.5924000	В	-1.0289070	2.6141770	-1.5734720
В	2.7800680	-0.3883530	-1.7375720	В	2.8717060	-0.4607030	-1.7519000
В	-1.8287180	-2.4243780	-0.3152350	В	-1.8347010	-2.5350940	-0.3032320
В	-0.7467610	-2.7655780	-1.4855040	В	-0.7204040	-2.8067140	-1.4731560
В	-0.2625360	-1.4529530	-2.4085680	В	-0.2083350	-1.5069960	-2.3913030
В	-2.9239560	-1.0422470	-0.5280800	В	-2.8201100	-1.0704130	-0.5321370
В	-1.3684440	-0.0793130	-2.5968370	В	-1.3094490	-0.1218870	-2.6209510
В	3.0624550	-0.8203710	-0.1500420	В	3.1272440	-0.8491080	-0.1707160
В	2.2925540	-1.8492770	-1.3229570	В	2.3421390	-1.8804590	-1.2851230
В	-0.4232880	1.4097690	-2.5136840	В	-0.3392330	1.3445820	-2.3712470
В	-2.0610810	1.3206740	-1.8136640	В	-2.0404630	1.3372820	-1.8500520
В	-2.0131730	0.6995230	2.1550980	В	-1.9483110	0.7552140	2.1291040
В	1.4231200	-1.5931740	2.2468360	В	1.4304500	-1.5112030	2.0377260
В	-0.1575020	-2.8975630	0.0640640	В	-0.1365470	-3.0886210	0.0544750
В	-3.0403930	0.7130820	-0.5027750	В	-3.0292920	0.7022850	-0.4973740
В	0.3542360	-2.6618160	1.6259300	В	0.4056340	-2.6928450	1.5539530
В	0.0241300	2.7034380	1.5127750	В	0.0918520	2.7446380	1.4922370
В	-2.8896980	1.4281970	0.9545680	В	-2.8365450	1.4681930	0.9206930
В	-1.4983090	2.2106480	1.3226310	В	-1.4728990	2.3148660	1.3587350
В	2.9348370	0.5129140	1.0243590	В	3.0033910	0.5261210	0.9857230
В	2.1549300	-0.0541410	2.4481910	В	2.2608140	-0.0687640	2.4096850
В	0.6636920	0.0686720	3.0112510	В	0.7277250	0.0554960	2.8594650
В	2.6396260	2.0075330	0.4306170	В	2.7396650	2.0082070	0.3775110
В	-0.3602330	1.2925240	2.2950800	В	-0.3379820	1.3903180	2.3407530
В	1.1560250	2.7398730	0.3834750	В	1.2136320	2.6938610	0.3143890
Li	0.9152920	-1.0991410	0.3047890	Li	-0.8758190	0.9338830	-0.1073680
Li	0.8046560	0.6010980	-1.0252300	Li	-0.2659050	-1.0918020	0.0148190
F	-0.2248210	0.0567700	0.1206630	F	0.5898950	0.2403400	0.0516910

²(A@2)⁻ Conformer 1.

PBF1PBF/6-31+p(d)

²(A@2)⁻ Conformer 2.

PBE1PBE/	/6-31+g(d)			PBE1PBE/6-31+g(d)			
Atom	Х	Y	Z	Atom	Х	Y	Z
В	-2.7066760	-1.7920340	0.9029600	В	-2.7143480	-1.7805700	0.9291180
В	0.8809180	-2.4958240	-1.4486520	В	0.9043080	-2.4791700	-1.4203020
В	-1.2065320	-2.3114570	1.2849720	В	-1.2191820	-2.3277890	1.3384920
В	2.0980200	2.2933190	-1.0192950	В	2.0734500	2.2861400	-1.0772950
В	-0.4986900	2.8318380	-0.0244670	В	-0.5086890	2.8066050	-0.0441420
В	-2.8317910	-0.1345270	-1.8798300	В	-2.7853400	-0.1468240	-1.8588740
В	-0.8827410	-0.0001950	3.0734090	В	-0.9201560	-0.0003460	3.0779570
В	2.9112490	-1.0368450	1.4065810	В	2.8851140	-1.0717380	1.3863540
В	-0.2096430	-1.3724980	2.4391260	В	-0.2653590	-1.3945900	2.4904910
В	0.2322910	-0.0311770	-3.0321210	В	0.2504540	-0.0031240	-3.0795040
В	1.3838090	-0.9851040	-2.3988990	В	1.4296820	-0.8711260	-2.3869980
В	2.9603890	0.8531640	-0.7289470	В	2.9897460	0.8574860	-0.8579190
В	0.5661400	2.5245080	-1.4621560	В	0.5520240	2.5668440	-1.5180110
В	-3.0305230	-0.1971620	1.0145180	В	-3.0807440	-0.1887740	1.0423740
В	-1.0539570	2.6037060	-1.5710930	В	-1.0580490	2.6211000	-1.5975470
В	2.8086360	-0.4055740	-1.7273280	В	2.9774630	-0.4133880	-1.8696880
В	-1.7967470	-2.3591980	-0.3613060	В	-1.8080230	-2.3867800	-0.3297640
В	-0.7507940	-2.7677720	-1.5573290	В	-0.7149340	-2.7253480	-1.4900510
В	-0.2834110	-1.4879730	-2.4965740	В	-0.2016620	-1.4307360	-2.4118240
В	-3.0114180	-1.0644450	-0.5503610	В	-2.9801860	-1.0588900	-0.5267970
В	-1.3550490	-0.0883580	-2.5987800	В	-1.3199800	-0.0882980	-2.5921670
В	3.2369300	-0.8090260	-0.1924870	В	3.1483340	-0.8382890	-0.2040080
В	2.3704460	-1.9102630	-1.3994700	В	2.3814310	-1.8426080	-1.3639110
В	-0.3720490	1.3480090	-2.3960350	В	-0.3596300	1.3620850	-2.4219010
В	-2.0538740	1.3329720	-1.8227750	В	-2.0328270	1.3247100	-1.7962330
В	-1.9922590	0.7176520	2.1196350	В	-2.0204580	0.7321760	2.1288610
В	1.4826910	-1.5304440	2.1496440	В	1.4589840	-1.5157150	2.2283170
В	-0.1362450	-2.8404280	-0.0095540	В	-0.1297120	-2.8360160	0.0472890
В	-3.1141040	0.7243100	-0.5077580	В	-3.0910980	0.7217030	-0.5014640
В	0.4103240	-2.6014930	1.5431810	В	0.3957500	-2.6085220	1.5958440
В	0.0328380	2.7565710	1.5266780	В	0.0397110	2.7101870	1.4940220
В	-2.8992660	1.4375440	0.9387990	В	-2.9306210	1.4515930	0.9495050
В	-1.4937320	2.2061890	1.2941200	В	-1.5136650	2.2103240	1.2837050
В	2.9956720	0.6017180	1.0458840	В	3.0267030	0.5121340	0.9395880
В	2.2399600	-0.0192800	2.4389050	В	2.2115420	-0.0230060	2.3963230
В	0.7171800	0.1167430	2.9372890	В	0.7029260	0.0953480	2.8866960
В	2.7537540	2.0711240	0.4230630	В	2.7160630	1.9917460	0.3412320
В	-0.3607030	1.4111660	2.3621920	В	-0.3872010	1.3958630	2.3650800
В	1.1670320	2.6116430	0.3762000	В	1.1729540	2.6126910	0.3398690
Li	-1.1436890	-0.0662600	-0.1352880	Li	1.1202600	-1.1040760	0.2298430
Li	1.1735230	-1.1167180	0.1282130	Li	-1.1458430	-0.0944770	0.1249500
F	0.4118760	0.2970230	0.0551930	F	0.4005940	0.2866070	-0.1274510

²(A@2)⁻ Conformer 3.

PBF1PBF/6-31+g(d)

²(A@2)⁻ Conformer 4.

PBE1PBE/6-31+g(d)				PBE1PBE/6-31+g(d)			
Atom	х	Υ	Z	Atom	Х	Υ	Z
В	-2.7386850	-1.8188610	0.9119850	В	-2.6828530	-1.8196070	0.8920100
В	0.8685600	-2.5253170	-1.3755170	В	0.8524110	-2.5970610	-1.4555140
В	-1.2633310	-2.3521240	1.3485890	В	-1.1853270	-2.3437020	1.2903210
В	2.0595440	2.3436840	-1.0499890	В	2.1083560	2.2395740	-1.0556660
В	-0.5256960	2.8286340	-0.0193680	В	-0.5087690	2.8275710	-0.0409070
В	-2.8158550	-0.1113750	-1.8552810	В	-2.8356630	-0.1606160	-1.9017630
В	-0.9596370	-0.0321630	3.1382710	В	-0.8835600	-0.0501570	3.0462480
В	2.7860140	-1.0965040	1.4097060	В	2.9834280	-1.1674390	1.4282240
В	-0.3134070	-1.4379710	2.5286670	В	-0.2106530	-1.4516670	2.4374140
В	0.2286450	0.0036620	-3.0423490	В	0.2050170	-0.0819920	-3.0839930
В	1.4115930	-0.9398880	-2.4587180	В	1.3752610	-0.9585090	-2.3928460
В	3.0155440	0.8991730	-0.8395180	В	3.0394010	0.8002280	-0.7262120
В	0.5401750	2.6236890	-1.5312430	В	0.5908910	2.4520210	-1.4748570
В	-2.9903500	-0.2159740	1.0299540	В	-2.9690300	-0.2226370	1.0040400
В	-1.0783300	2.6404380	-1.5897490	В	-1.0589420	2.5437000	-1.5657520
В	2.8595460	-0.3696340	-1.8164970	В	2.8163950	-0.4620830	-1.7287920
В	-1.8243670	-2.4087040	-0.3170500	В	-1.8085490	-2.4354560	-0.3620400
В	-0.7364030	-2.7542910	-1.4811370	В	-0.7361200	-2.8385150	-1.5319690
В	-0.2313030	-1.4527000	-2.4006400	В	-0.2611980	-1.5060030	-2.4141390
В	-2.9038750	-1.0440320	-0.5259650	В	-2.9142800	-1.0599020	-0.5376180
В	-1.3469240	-0.0740590	-2.5394290	В	-1.3814200	-0.1407340	-2.6511370
В	3.0283930	-0.8227210	-0.1707240	В	3.1408290	-0.9275900	-0.1677520
В	2.3078740	-1.8408460	-1.3155390	В	2.2946820	-1.9023630	-1.3069580
В	-0.4093500	1.4223930	-2.4962330	В	-0.3749630	1.2936020	-2.4183340
В	-2.0653060	1.3417230	-1.8172920	В	-2.0623210	1.2922530	-1.8434600
В	-2.0401540	0.7080290	2.1656630	В	-2.0114590	0.7355440	2.1580680
В	1.4013750	-1.5785760	2.2763890	В	1.4619280	-1.5556920	2.0311110
В	-0.1658030	-2.8974930	0.0724910	В	-0.1014330	-2.8394740	0.0091450
В	-3.0043920	0.7256470	-0.4571880	В	-3.1292340	0.7076860	-0.5252000
В	0.3403910	-2.6684930	1.6371920	В	0.4038130	-2.6913320	1.5614500
В	0.0330520	2.6491190	1.5057940	В	0.1022800	2.6433880	1.4750050
В	-2.9507190	1.4226870	1.0033250	В	-2.9100680	1.4341610	0.9480590
В	-1.5096340	2.1244850	1.2617210	В	-1.5007890	2.2138380	1.3294410
В	2.9498080	0.4950510	0.9904810	В	3.1214090	0.5169230	1.0281000
В	2.1392210	-0.0609370	2.4419490	В	2.2603800	-0.0836840	2.3804990
В	0.6488940	0.0486590	2.9771810	В	0.7333220	0.0521510	2.8605870
В	2.6517330	1.9837180	0.3910000	В	2.7391400	1.9610820	0.4131960
В	-0.3936580	1.3383140	2.3902200	В	-0.3653750	1.3695920	2.3911350
В	1.1480350	2.6846110	0.3446350	В	1.2130410	2.7345180	0.2744170
Li	0.9044620	-1.0906460	0.3392600	Li	-1.1107630	0.6420990	-0.0200120
Li	0.8520850	0.5910880	-1.0042500	Li	1.1246620	0.5690550	0.5395980
F	-0.2579820	0.0336480	0.0792620	F	0.0859070	-0.4176300	-0.1530860

²(A@2)⁻ Conformer 5.

PBF1PBF/6-31+g(d)

²(A@2)⁻ Conformer 6.

PBE1PBE/6-31+g(d)			PBE1PB	PBE1PBE/6-31+g(d)			
Atom	х	Υ	Z	Atom	х	Υ	Z
В	-2.6573360	-1.8047550	0.9491610	В	-2.6893710	-1.8702160	0.9332130
В	0.8939970	-2.4933020	-1.4404640	В	0.8905770	-2.4902630	-1.3471260
В	-1.1787740	-2.3730780	1.3251160	В	-1.2253310	-2.4896480	1.3718520
В	2.1358380	2.3267110	-1.0362870	В	2.0830400	2.2493850	-1.0871250
В	-0.4642110	2.7777400	-0.0230490	В	-0.5682460	3.0853870	-0.0483270
В	-2.7666390	-0.1751260	-1.8724600	В	-2.7447720	-0.1850110	-1.8666390
В	-0.8838050	-0.0066420	3.1147130	В	-0.8430890	-0.0299210	3.0395750
В	2.9055280	-1.0078330	1.3986730	В	2.9893390	-1.1347490	1.4555510
В	-0.1912410	-1.4350520	2.5525830	В	-0.2143150	-1.4471940	2.4542180
В	0.2439310	-0.1033340	-3.1340870	В	0.2826390	-0.0119220	-3.0333660
В	1.4192970	-1.0513000	-2.4808620	В	1.4254180	-0.9128060	-2.3259970
В	2.9846070	0.8746470	-0.7704890	В	3.0726500	0.8319330	-0.7436440
В	0.6031260	2.4838170	-1.4799360	В	0.5888320	2.5651170	-1.5036800
В	-2.9908300	-0.2050830	1.0530720	В	-2.9406450	-0.2456880	1.0212340
В	-0.9971650	2.5351340	-1.5808840	В	-1.0816450	2.6711240	-1.5778620
В	2.7899970	-0.3804130	-1.7554840	В	2.9064500	-0.4600410	-1.7299240
В	-1.7565270	-2.3775130	-0.3329080	В	-1.8473670	-2.5641580	-0.3185200
В	-0.7405160	-2.7440600	-1.5760510	В	-0.7151570	-2.7537100	-1.4860570
В	-0.2767360	-1.6164220	-2.6995720	В	-0.1842680	-1.4684990	-2.4202460
В	-2.8807390	-1.0567180	-0.5072980	В	-2.8885980	-1.1100320	-0.5273910
В	-1.3495140	-0.1405880	-2.6895450	В	-1.2853190	-0.0914770	-2.5691520
В	3.1546840	-0.7624410	-0.1962320	В	3.1131100	-0.9028310	-0.1417500
В	2.3169810	-1.8354020	-1.2988210	В	2.3920010	-1.9022640	-1.3218230
В	-0.3379750	1.3046230	-2.4842110	В	-0.3518190	1.4077630	-2.4428970
В	-1.9738530	1.2618670	-1.8338950	В	-1.9969700	1.3074600	-1.8020910
В	-2.0341010	0.7913610	2.2448600	В	-1.9485900	0.7323760	2.1298100
В	1.4451120	-1.4402490	2.0601920	В	1.4571280	-1.5275420	2.0139240
В	-0.0864730	-2.7970970	-0.0107080	В	-0.1346360	-2.9579120	0.0460320
В	-2.9684250	0.6904380	-0.4778020	В	-2.9647000	0.6681450	-0.4829210
В	0.4281910	-2.6030030	1.5646010	В	0.4010750	-2.6941420	1.5727710
В	0.0680540	2.7220100	1.5334110	В	0.0605690	2.7138310	1.4377880
В	-2.8847980	1.4326150	0.9786620	В	-2.8793220	1.4088890	0.9597910
В	-1.4728600	2.1959200	1.3159540	В	-1.4983550	2.2179160	1.2943060
В	2.9799630	0.6090010	1.0012560	В	2.9975710	0.5032440	0.9718260
В	2.2716120	0.0056230	2.4390680	В	2.2837840	-0.0817990	2.4052750
В	0.7344100	0.1141220	2.9193720	В	0.7511320	0.0527950	2.8512580
В	2.7950610	2.1004740	0.3883980	В	2.6663150	1.9601520	0.3762420
В	-0.3829930	1.4491260	2.4717110	В	-0.3472310	1.4074430	2.3604400
В	1.1988840	2.5991440	0.3713910	В	1.1665310	2.7282460	0.2293840
Li	-0.1040360	-0.5715170	-0.9863130	Li	-0.3879390	1.0951160	-0.2235700
Li	-0.8656510	-0.2442050	0.9148110	Li	-0.7804200	-0.8583760	0.1581480
F	0.5257120	0.2659010	0.2104100	F	0.6397280	-0.1009770	0.0575270

³(A@1)

²(B@1)⁺

UPBE1PBE/6-311+g(2d)			UPBE1F	UPBE1PBE/6-311+g(2d)				
Atom	Х	Y	Z	Atom	Х	Y	Z	
В	2.5151140	0.8293140	1.9766960	В	2.7255880	1.5064790	1.2224150	
В	-0.7275360	2.9113990	0.0795340	В	-0.8394390	2.7344840	-0.9358010	
В	0.9836220	1.1628340	2.4750560	В	1.2458890	1.9875540	1.7063530	
В	-1.9238480	-1.2317960	-2.2761010	В	-2.1608930	-2.0211760	-1.4630440	
В	0.5295410	-2.3682340	-1.5029730	В	0.4436330	-2.8324790	-0.5717660	
В	3.0504290	0.9635180	-1.2213850	В	2.8102090	0.4623600	-1.8071600	
В	0.5002250	-1.6983990	2.6060500	В	0.8911950	-0.5964000	2.9763810	
В	-3.0821020	0.2776950	1.4365270	В	-2.8728670	0.8321910	1.5852670	
В	-0.1298960	-0.1838380	2.7735390	В	0.2537960	0.8876800	2.6951130	
В	0.1483080	1.6922630	-2.4916800	В	-0.2456720	0.5919660	-2.9904200	
В	-1.0744930	2.2004930	-1.5498160	В	-1.3978520	1.3973900	-2.1912530	
В	-2.8480160	-0.1342550	-1.3677370	В	-3.0160130	-0.6405640	-0.9254930	
В	-0.3490550	-1.2578620	-2.6331700	В	-0.6222980	-2.1880930	-1.8846760	
В	2.8760040	-0.5562830	1.2273410	В	3.0604160	-0.0716870	1.0319950	
В	1.2585900	-1.3698310	-2.6128780	В	1.0175380	-2.2413120	-1.9845320	
В	-2.5836550	1.4340510	-1.4981050	В	-2.8537840	0.7955320	-1.6540230	
В	1.7904900	2.0281420	1.1255510	В	1.8632530	2.3599660	0.1158200	
В	0.9040680	3.1293430	0.3033710	В	0.7741800	2.9378790	-0.9611670	
В	0.6086030	2.5887970	-1.2205170	В	0.2521970	1.8882720	-2.1215480	
В	3.0314500	0.9858590	0.4006380	В	3.0254510	1.1001390	-0.3320980	
В	1.6815840	1.4111990	-1.9936850	В	1.3393540	0.5581200	-2.5273280	
В	-3.1857920	0.9752220	-0.0497440	В	-3.1607330	0.9224830	-0.0246310	
В	-2.2002830	2.4781370	-0.3538470	В	-2.3350150	2.1302620	-0.9817200	
В	0.6786150	0.1712340	-2.6875940	В	0.3431680	-0.8569600	-2.6251760	
В	2.2867470	-0.2387430	-2.0622200	В	2.0400260	-0.9662010	-2.0240400	
В	1.7368210	-1.8345130	1.5431950	В	1.9923110	-1.1625720	1.9049470	
В	-1.7721380	0.2356620	2.4829260	В	-1.4436770	1.1023560	2.4305530	
В	0.0884830	2.3656900	1.5153110	В	0.1782980	2.7950270	0.5733220	
В	3.1826070	-0.5119780	-0.5226090	В	3.1051800	-0.6640630	-0.6558930	
В	-0.6242370	1.3655060	2.6648350	В	-0.3574850	2.2591750	2.0214310	
В	-0.1619480	-3.1558310	-0.2536580	В	-0.1068180	-2.9308130	0.9710590	
В	2.7802910	-1.8833320	0.2704310	В	2.8881280	-1.6489890	0.6216520	
В	1.3551110	-2.6529030	0.0048940	В	1.4626320	-2.4217710	0.8154700	
В	-3.1210190	-0.8868450	0.2401970	В	-3.0328380	-0.6538510	0.8595100	
В	-2.5065300	-1.1559710	1.7987370	В	-2.2260910	-0.3986350	2.3508140	
В	-1.0667430	-1.6446070	2.3106760	В	-0.7140520	-0.6484830	2.7993930	
В	-2.7653770	-1.7770860	-1.0513090	В	-2.7626530	-1.9894710	-0.0081470	
В	0.0732390	-2.4245200	1.1829950	В	0.3686710	-1.8779300	2.1047610	
В	-1.1757050	-2.2995310	-1.1667420	В	-1.2184520	-2.5893870	-0.1730480	
Li	-1.1916700	0.9038170	0.6032790	Li	-1.0994380	1.0742150	0.3786240	
Li	1.1511690	0.0416580	-0.0650170	Li	1.1557170	0.0246180	-0.0144970	
F	-0.4171360	-0.2906710	-0.1276230	F	-0.4243430	-0.2961610	-0.0886820	

²(A@2)⁻

¹(B@2)

UPBE1PBE/6-311+g(2d)			UPBE1P	UPBE1PBE/6-311+g(2d)				
Atom	Х	Y	Z	Atom	Х	Y	Z	
В	2.6733540	0.8946220	1.8156770	В	2.6742830	1.7882260	0.8830330	
В	-0.6821570	2.9382030	-0.0141290	В	-0.9037320	2.4966420	-1.4700140	
В	1.1738980	1.2512890	2.3365270	В	1.1818530	2.3329630	1.2625110	
В	-2.0768950	-1.3016180	-2.1456020	В	-2.0569620	-2.3111410	-1.0029970	
В	0.4037160	-2.4455060	-1.4430010	В	0.5230380	-2.8198790	0.0091200	
В	2.9646480	0.8745950	-1.4019730	В	2.7808730	0.1280430	-1.8595110	
В	0.6354490	-1.6100910	2.6655460	В	0.8923380	0.0500840	3.0414280	
В	-2.9723160	0.3770450	1.5826070	В	-2.8924770	1.0821120	1.3852980	
В	0.0583180	-0.0687340	2.7912580	В	0.2059350	1.4183470	2.4188630	
В	0.0074130	1.5790550	-2.5910340	В	-0.2485270	-0.0357470	-3.0500560	
В	-1.1553380	2.1543600	-1.6244350	В	-1.4180090	0.8764590	-2.4313330	
В	-2.9140440	-0.1572590	-1.2123540	В	-2.9747200	-0.8926660	-0.7551440	
В	-0.5323100	-1.3813780	-2.5756610	В	-0.5450170	-2.5722000	-1.4633800	
В	2.9353250	-0.5484700	1.1159280	В	3.0586350	0.2164820	1.0295240	
В	1.0831810	-1.5029280	-2.6197800	В	1.0604300	-2.6234840	-1.5413600	
В	-2.6419630	1.4144050	-1.4127350	В	-2.8495520	0.3668530	-1.7716970	
В	1.8899140	2.0855320	0.9799330	В	1.7876480	2.3760980	-0.3749290	
В	0.9575650	3.1101990	0.1126300	В	0.6977220	2.7124440	-1.5493690	
В	0.5278240	2.5221190	-1.3674850	В	0.2115550	1.4091510	-2.4601060	
В	3.0685220	0.9875770	0.2177840	В	2.9705850	1.0612650	-0.5531120	
В	1.5550580	1.3025390	-2.1182020	В	1.3218270	0.0547990	-2.5889700	
В	-3.1763860	1.0160550	0.0822830	В	-3.1658930	0.8214700	-0.2065480	
В	-2.1809960	2.5095850	-0.3488720	В	-2.3732480	1.8319430	-1.4022920	
В	0.5121050	0.0361100	-2.7234110	В	0.3610880	-1.3931020	-2.3854440	
В	2.1421590	-0.3572200	-2.1454670	В	2.0364130	-1.3386850	-1.7737750	
В	1.7916100	-1.8228990	1.5447970	В	2.0190960	-0.6913670	2.1348150	
В	-1.5971520	0.3369800	2.5468010	В	-1.4915280	1.5920940	2.1491820	
В	0.2293830	2.4358270	1.4454650	В	0.1080150	2.8605770	-0.0160750	
В	3.1125070	-0.5746890	-0.6526560	В	3.1094220	-0.7195430	-0.5007770	
В	-0.4431170	1.4810370	2.6258090	В	-0.4250540	2.6444670	1.5250010	
В	-0.2427800	-3.1308850	-0.1050430	В	-0.0199270	-2.7099570	1.5435770	
В	2.7567510	-1.9001890	0.2105940	В	2.9104890	-1.4116620	0.9567570	
В	1.3107930	-2.6493860	0.0538620	В	1.5124090	-2.1872630	1.3236410	
В	-3.0802090	-0.8392670	0.4367820	В	-2.9826870	-0.5299140	0.9858620	
В	-2.4088250	-1.0574440	1.9794960	В	-2.2029810	0.0673650	2.3957400	
В	-0.9466200	-1.5425990	2.4169500	В	-0.6999750	-0.0864320	2.9183120	
В	-2.8358940	-1.7947260	-0.8328870	В	-2.6843370	-2.0161650	0.4165550	
В	0.1257800	-2.4279740	1.3140920	В	0.3773120	-1.3706890	2.3711970	
В	-1.2775150	-2.3509310	-1.0712840	В	-1.1533320	-2.6454970	0.4009770	
Li	-1.1373080	0.9700550	0.6192690	Li	-1.1157830	1.1203250	0.1579320	
Li	1.1464640	0.0465320	-0.0426330	Li	1.1584650	0.0138640	0.0390840	
F	-0.4276420	-0.2589050	-0.1250470	F	-0.4138180	-0.2964040	-0.0531340	

FLi₂. Neutral doublet.

FLi₂. Positively charged singlet.

UPBE1PBE/6-311+g(2d)				UPBE1PBE/6-311+g(2d)			
Atom	Х	Υ	Z	Atom	Х	Y	Z
Li	0.0000000	1.3211750	-0.6212150	Li	0.0000000	1.6671150	-0.0520900
Li	0.0000000	-1.3211750	-0.6212150	Li	0.0000000	-1.6671150	-0.0525560
F	0.0000000	0.0000000	0.4141430	F	0.0000000	0.0000000	0.0348820

References:

- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Wallingford CT2009.
- S2. E. D. Glendening, K. B. J, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, C. R. Landis and F. Weinhold., Theoretical Chemistry Institute, University of Wisconsin, Madison, 6.0. edn., 2013.
- Neese, F. The Orca Program System. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2, 73-78.
- S4. M. Lundberg and P. E. M. Siegbahn, J. Chem. Phys., 2005, **122**, 224103.
- S5. M. Sodupe, J. Bertran, L. Rodríguez-Santiago and E. J. Baerends, *J. Phys. Chem. A* 1999, **103**, 166-170.
- S6. J. Gräfenstein, E. Kraka and D. Cremer *Phys. Chem. Chem. Phys.* 2004, **6**, 1096-1112.
- J. Poater, M. Solà, A. Rimola, L. Rodríguez-Santiago and M. Sodupe, J. Phys. Chem. A 2004, 108, 6072-6078.
- S8. Zhurko G. A. Chemcraft graphical program for visualization of quantum chemistry computations. (<u>https://chemcraftprog.com</u>)