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1 Electric dipole matrix elements in the presence of Rashba effect
The conduction bands of HOIPs are comprised of Pb p orbitals, which, due to the strong spin-orbit
coupling (SOC), are characterized by the total angular momentum j = l+ s with l and s being orbital
and spin angular momenta. The SOC and crystal field split the conduction bands into three bands,
which, in the descending order in energy, are described by ( j, jz) = (3/2,±1/2), ( j, jz) = (3/2,±3/2),
and ( j, jz) = (1/2,±1/2), respectively1. The most relevant processes to photovoltaics in HOIPs occur
in the lowest conduction band, which has the basis functions of Eq. (1) in the main text.

The Rashba effect lifts the spin degeneracy and splits the lowest conduction band into an upper
band and a lower band with energy dispersions

E±ck =
h̄2

2me
[(k⊥± k0)

2 + k2
z ], (1)

and the eigenstates for each k are

c̃k± =
1√
2
(e−iφ/2c+∓ ieiφ/2c−)eik·r. (2)

The valence band in HOIPs is made of s orbital and has basis functions of v↑(↓) ≡ S ↑ (↓). When the
smaller Rashba effect in the valence band is included,

Evk =−Eg−
h̄2

2mh
(k2

x + k2
y + k2

z )+λv(kyσx− kxσy), (3)

1

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics.
This journal is © the Owner Societies 2017



the band is also split into an upper band and a low band with energy dispersions

E±vk =−Eg−
h̄2

2mh
[(k⊥± k̃0)

2 + k2
z ], (4)

where k̃0 = λvmh/h̄2. The eigenstates at k are

ṽk± =
1√
2
(e−iφ/2v↑± ieiφ/2v↓)eik·r. (5)

To evaluate the electric-dipole matrix moment between conduction and valence states, we start
from the matrix element between the basis functions,

〈c+|e ·p|v↑〉 = −
mP‖ sinξ

h̄
ez, (6)

〈c+|e ·p|v↓〉 = −mP⊥ cosξ

h̄
e−, (7)

〈c−|e ·p|v↑〉 = −mP⊥ cosξ

h̄
e+, (8)

〈c−|e ·p|v↓〉 =
mP‖ sinξ

h̄
ez. (9)

It is straightforward to obtain the electric-dipole matrix elements between the conduction and valence
bands,

〈c̃k−|e ·p|ṽk+〉=
m
2h̄

[
ie−iφ P⊥ cosξ e+− ieiφ P⊥ cosξ e−

]
, (10)

〈c̃k−|e ·p|ṽk−〉=
m
2h̄

[
−2P‖ sinξ ez + ie−iφ P⊥ cosξ e++ ieiφ P⊥ cosξ e−

]
. (11)

The oscillator strength of these transitions are

∑
q
|〈c̃k−|e ·p|ṽk+〉|2 =

m2

2h̄2 P2
⊥ cos2

ξ , (12)

∑
q
|〈c̃k−|e ·p|ṽk−〉|2 =

m2

2h̄2

[
2P2
‖ sin2

ξ +P2
⊥ cos2

ξ

]
, (13)

which are similar in magnitude since cos2 ξ/sin2
ξ ' 5 and P‖ ' P⊥ in CH3NH3PbI3,1 and their average

is identical to pcv defined in the main text. Hence the Rashba effect does not significantly suppress the
electric-dipole matrix elements or the oscillator strengths of transitions between the conduction and
valence bands. This is because the conduction band is made of jz = ±1/2 states, which contain both
up- and spin-components.
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2 Polar couplings in the conduction and valence bands
The polar coupling in HOIPs was derived in Ref.3, which is an extension of the well-known Fröhlich
Hamiltonian2. For electron

He
ep =−i∑

jq

(4παe j

Ω

)1/2h̄ωl j

q

( h̄
2meωl j

)1/4
(bqc†

k+qτ
ckτ −b†

qc†
kτ

ck−qτ), (14)

and for hole,

Hh
ep = i∑

jq

(4παh j

Ω

)1/2h̄ωl j

q

( h̄
2mhωl j

)1/4
(bqc†

k+qτ
ckτ −b†

qc†
kτ

ck−qτ)), (15)

where the dimensionless polar coupling strength is defined as

αe(h) j =
e2

h̄
(

me

2h̄ωl j

)1/2 1
ε∞

(
1−

ω2
t j

ω2
l j

)
∏
i6= j

∣∣∣ω2
l j
−ω2

ti

ω2
l j
−ω2

li

∣∣∣≡ e2

h̄

(me(h)

2h̄ωl j

)1/2 1
εs j

. (16)

In the calculations presented in the main text, we consider only the Pb-X stretching mode with phonon
energy Ep ≡h̄ωl1 and neglect its dispersion. The polar coupling is then

V e(h)
q =

(4παe(h)

Ω

)1/2 Ep

q

( h̄2

2me(h)Ep

)1/4
≡

Ue(h)√
Ωq

, (17)

where Ω is the material’s volume and αe/αh = (me/mh)
1/2.

In the conduction bands, because of the Rashba effect, the polar coupling between the eigenstates
are

〈c̃k′+|V e
q |c̃k+〉 = 〈c̃k′−|V e

q |c̃k−〉=
Ue√
Ωq

cos
φ ′−φ

2
. (18)

〈c̃k′+|V e
q |c̃k−〉 = −〈c̃k′+|V e

q |c̃k−〉= i
Ue√
Ωq

sin
φ ′−φ

2
. (19)

3 Evaluation of integrals
Equations (16) and (17) in the main text involve 6-fold integrals, which are numerically challenging
if not analytically simplified. To take advantage of the symmetry in the conduction- and valence-band
dispersions, we use the cylindrical and spherical coordinates for the conduction and valence bands,
respectively, ∫

d3k
∫

d3k′ =
∫

k⊥dk⊥dkzdφ

∫
k′2dk′ sinθ

′dθ
′dφ
′ (20)

From the energy conservation in the δ -function, we can fix k′. Since the integrands in Eqs. (16) and
(17) depend only the difference φ −φ ′, we can set φ ′ = 0 and integrals become four-fold.
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For Eq. (16), we can analytically integrate over φ and θ ′ and obtain

Ih
± =

U2
h

(2π)4
1
2

(2mh

h̄2

)3/2 ∫
k⊥dk⊥dkz

(
h̄ω±Ep−Eg− h̄2

2me
[(k⊥− k0)

2 + k2
z ]
)1/2

[Eg +
h̄2

2me
[(k⊥− k0)2 + k2

z ]+
h̄2

2mh
k2−h̄ω

]2

× 1
kk′

log
(2
√

c(a+b1 + c)+2c+b1)(2
√

c(a+b2 + c)+2c+b2)

(2
√

c(a+b1 + c)−2c+b1)(2
√

c(a+b2 + c)−2c+b2)
, (21)

a = (k2 + k′2)2−4k2
⊥k′2, b1 =−4kzk′(k2 + k′2), c = 4k2k′2, b2 =−b1, (22)

which is a two-fold integral and can be reliably evaluated numerically. Numerically, in order to avoid
the resonance when h̄ω approaches ∆m, we include an energy broadening Γ2 in the energy denomina-
tor,

[∆k−h̄ω

]2
→ [∆k−h̄ω

]2
+Γ

2, (23)

where ∆k ≡ [Eg +
h̄2

2me
[(k⊥− k0)

2 + k2
z ]+

h̄2

2mh
k2 and Γ = 0.01 eV is fixed in the calculations. It should be

note that ∆k >h̄ω since the PA absorption is limited to h̄ω < ∆m ≤ ∆k in our calculations.
For Eq. (17), the integration over φ involves expressions

I1 =
∫ 2π

0
dφ

1+ cosφ

A−Bcosφ
and I2 =

∫ 2π

0
dφ

1− cosφ

A−Bcosφ
, (24)

where A = k2 + k′2−2kzk′ cosθ ′ and B = 2k⊥k′ sinθ ′. I1 and I2 can be analytically worked out,

I1 = 2π

[
− 1

B
+

A+B
B

1√
A2−B2

]
, (25)

I2 = 2π

[ 1
B
+

B−A
B

1√
A2−B2

]
. (26)

However, the integration over θ ′ can be expressed in a closed form and the final integral to be numer-
ically evaluated is three-fold.
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