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Supporting Information

The experimental details which outline the various instruments and techniques used are

included in the article. The supporting information provides the data and analysis used to

help characterise the various TMS-hedgehogs synthesised, in the following order:

Pg. 2-8) Chemical structures, 1H NMR profiles, peak assignment and elemental analysis.

Pg. 9-10) Determining the cmc of AOTSiC from surface tension data.

Pg. 11-13) Details of the scattering models used.
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Chemical Structures
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NMR + Elemental analysis

AOTA
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Table 1: Data from 1H NMR spectra shown above for AOTA and corresponding elemental
analysis where experimentally obtained values are shown in blue.

Chemical
shift Integration

Identified
proton -
Multiplicity

AOTA - Diester
0.95 18.0 a - s
3.89 4.0 b - s
6.86 2.0 c - s

AOTA - Surfactant
0.85-0.83 18.02 a - s
2.79-2.98 1.0 c - dd
3.58-3.73 2.01 b - m
3.58-3.73 2.01 d - m

Theoretical - Experimental
AOTA C H S
Diester 65.5 - 65.6 9.36 - 9.35 -

Surfactant 46.66 - 46.76 6.99 - 7.19 8.90 - 8.78
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AOTB

Table 2: Data from 1H NMR spectra shown above for AOTB and corresponding elemental
analysis where experimentally obtained values are shown in blue.

Chemical
shift Integration

Identified
proton -
Multiplicity

AOTB - Surfactant
0.84-0.87 18.0 a - s
1.41-1.46 4.01 b - m
2.70-2.86 2.0 d - dd
3.58-3.62 1.0 e - dd
3.94-4.04 4.0 c - m

Theoretical - Experimental
AOTB C H S

Surfactant 49.4 - 49.89 7.47 - 7.34 8.24 - 8.17
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AOTSiA

Table 3: Data from 1H NMR spectra shown above for AOTSiA and corresponding elemental
analysis where experimentally obtained values are shown in blue.

Chemical
shift Integration

Identified
proton -
Multiplicity

AOTSiA - Surfactant
0 18.0 a - s

2.73-2.92 1.98 c - dd
3.67-3.74 4.98 b - m
3.67-3.94 4.98 d - m

Theoretical - Experimental
AOTSiA C H S
Surfactant 36.72 - 37.98 6.42 - 6.48 8.17 - 8.01
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AOTSiB

Table 4: Data from 1H NMR spectra shown above for AOTSiB and corresponding elemental
analysis where experimentally obtained values are shown in blue.

Chemical
shift Integration

Identified
proton -
Multiplicity

AOTSiB - Surfactant
0 18.0 a - s

0.82-0.91 4.01 b - m
2.69-2.90 2.0 d - dd
3.58-3.64 1.0 e - dd
3.96-4.09 4.03 c - mm

Theoretical - Experimental
AOTSiB C H S
Surfactant 39.98 - 40.12 6.95 - 6.98 7.62 - 7.48
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AOTSiC

Table 5: Data from 1H NMR spectra shown above for AOTSiC and corresponding elemental
analysis where experimentally obtained values are shown in blue.

Chemical
shift Integration

Identified
proton -
Multiplicity

AOTSiC - Surfactant
-0.06 18.0 a - s

0.39-0.48 4.01 b - m
1.44-1.53 4.02 c - m
2.73-2.92 2.02 e - dd
3.62-3.67 1.0 f - dd
3.86-3.93 4.02 d - m

Theoretical - Experimental
AOTSiC C H S
Surfactant 42.83 - 42.88 7.41 - 7.48 7.15 - 7.07
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Determining the cmc of AOTSiC

The same procedure was used to determine the cmc of each surfactant discussed in the

article (AOTA, B, SiA, SiB and SiC). Here, the procedure is outlined for AOTSiC. From the

surface tension data shown in Figure 1 below, the double differential is taken to show points

of inflection along the curve, see Figure 2. A Gaussian function is then applied over the

double differential to accurately assign the point at which the surfactants begin to micellise,

shown in Figure 3. Based on the following method: Hait, S.K. and Moulik, S.P., 2001.

Journal of Surfactants and Detergents, 4, 3, 303-309.

Figure 1: Equilibrium surface tension data for AOTSiC at 25◦C in water at an EDTA :
surfactant ratio of 250 : 1.
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Figure 2: Double differential of surface tension data shown in Figure 1 showing the greatest
points of inflection along the curve.

Figure 3: Gaussian distribution applied over the double differential to accurately highlight
the cmc which can be calculated from the exponential of the value xc.
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Scattering models

SANS data were fitted to form factors describing either an ellipsoidal model, lamella paracrys-

tal model, or spherical model using the fitting program SansView, which uses an iterative,

least-squares fitting process. Known model parameters can be set to constant values (e.g.

scattering length densities, dielectric constants, volume fractions) and unknown fit param-

eters set to ′float′ allowing the program to refine them to obtain an optimized fit. The

equations describing the different forms factors used are as follows:

Ellipsoids

The form factor (f(Q)) can be multiplied by a Hayter-Penfold charge repulsion (S(Q)) for

charged particles. When Ra < Rb the ellipsoid is said to be oblate (disc-like), when Ra =

Rb the equations effectively tend to that of the sphere form factor above and when Ra > Rb

the ellipsoid is said to be prolate (rod-like). The ellipsoid form factor is best employed for

ellipticities (given by Ra, Rb, and X) that do not deviate from unity a great deal. When X

< ≈ 0.2 the scattering particle can said to be disc-like and a disc form factor would better

describe the data. When X > ≈ 5 the particle is rod-like and a cylinder form factor is more

suitable.

p(q, α) =
Scale

V
f 2(q) + bkg (1)

f(q) =
3(∆p)V (sin[qr(Ra, Rb, α)]− qrcos[qr(Ra, Rb, α)])

qr(Ra, Rb, α)
(2)

r(Ra, Rb, α) = [R2
bsin

2α +R2
acos

2α]

1

2 (3)

where α is the angle between the axis of the ellipsoid and the Q-vector, V is the volume of

the ellipsoid, Ra is the polar radius of the ellipsoid, Rb is the equatorial radius of the ellipsoid
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and ∆ρ, the contrast, is the scattering length density difference between the scattering

ellipsoid and the solvent.

Lamella paracrystal

The paracrystal model calculates the scattering from a stack of repeating lamellar structures

with the stacks of laterally infinite lamellae treated as a paracrystal to account for the repeat-

ing spacing. The repeat distance is further characterized by a Gaussian polydispersity.The

scattering intensity I(Q) is calculated as:

I(Q) = 2π(∆ρ)2Γm
Pbil(Q)

Q2
ZN(Q) (4)

The form factor of the bilayer is approximated as the cross section of an infinite, planar

bilayer of thickness D.

Pbil(Q) = (
sin(QD

2
)

QD/2
)2 (5)

Here, the scale factor is used instead of the mass per area of the bilayer. The scale

factor is the volume fraction of the material in the bilayer, not the total excluded volume of

the paracrystal. ZN(Q) describes the interference effects for aggregates consisting of more

than one bilayer. The parameters for this model are: bilayer thickness D, average distance

between two adjacent layers L, distribution of layer distance P, and the number of layers

Nlayer.

Spheres

The form factor for a sphere is described below:

P (q) =
Scale

V
[
3V (∆ρ)[sin(QR)−QRcos(QR)]

(QR)3
]2 + bkg (6)
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Where scale is a factor used to put the intensity on an absolute scale, V is the scattering

particle volume, R the scattering particle radius and bkg the background incoherent scatter-

ing. In the case of polydisperse spheres R is 148 further defined by a Gaussian distribution

of homogeneous spheres given by the following equation:

f(R) =
1

σ
√

2π
exp[− 1

2σ2
(R−Ravg)

2] (7)

Here σ is the standard deviation, Ravg is the average radius, and the polydispersity, P =

σ/Ravg.
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