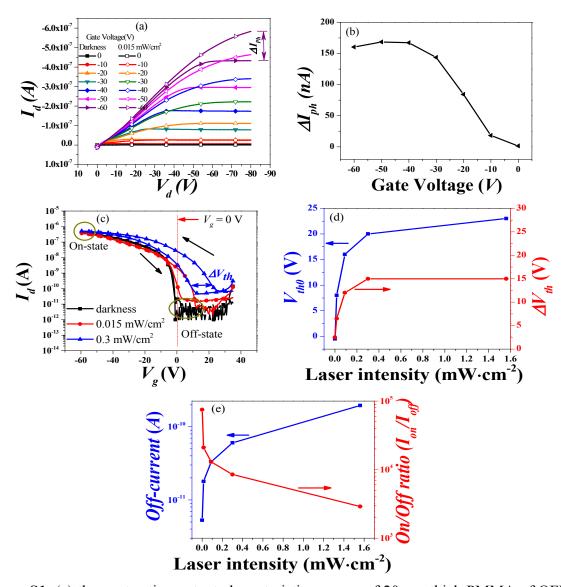
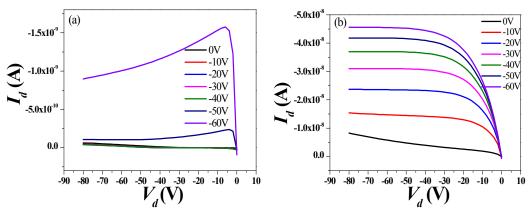
Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2017

Supporting Information

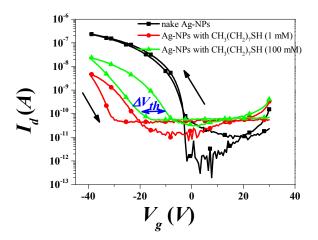
Title

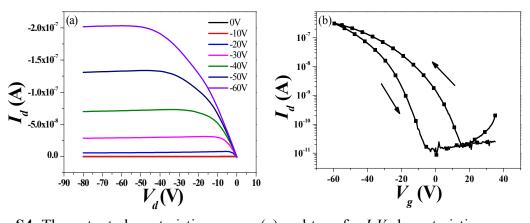

Light-Activated Electric Bistability for Evaporated Silver Nanoparticles in Organic Field-Effect Transistor

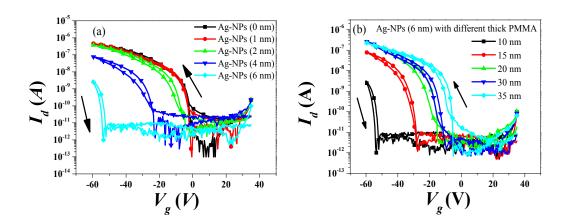
Author(s), and Corresponding Author(s)*


Tao Han, Linlin Liu,* Minying Wei, Cong Wang, Xiaoyan Wu, Zengqi Xie, Yuguang Ma*

†Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China.


EXPERIMENTAL SECTION


Figure S1. (a) the contrastive output characteristics curves of 20 nm-thick PMMA of OFETs device without Ag-NPs (logogram as control device) in dark and under weak photo-irradiation (0.015 mW/cm²), (b) the ΔI_{Ph} value of control device as a function of gate voltage under photo-irradiation, (c) the transfer *I-V* characteristics curves of control device. (d) The V_{th0} and ΔV_{th} of control device variation as a function of laser intensity. (e) The Off-current and On/Off ratio of control device variation as a function of laser intensity.


Figure S2. The output characteristics curves of 5 nm-thick PMMA of Ag-NPs device embedded with 6 nm-thick Ag-NPs.(a) in dark and (b) under photo-irradiation (10.42 mW/cm²).

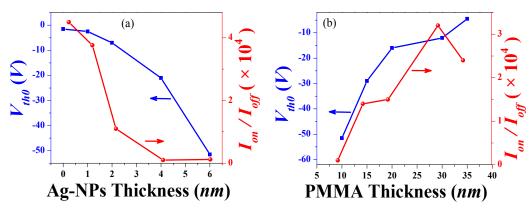

Figure S3. The transfer *I-V* characteristics curves of 30 nm-thick PMMA of Ag-NPs device embedded with 2 nm-thick Ag-NPs (possessing surface modification or not) in dark. The black line represents the device embedded with naked Ag-NPs; the red line represents the device with Ag-NPs having been immersed in a 1 mM ethanol solution of CH₃(CH₂)₇SH; the green line represents the device with Ag-NPs immersed in a 100 mM ethanol solution of CH₃(CH₂)₇SH. With the purpose of surface modification, the nanoparticle-decorated substrates were immersed in an ethanol solution of CH₃(CH₂)₇SH with different concentration for 12h for SAM formation.

Figure S4. The output characteristics curves (a) and transfer *I-V* characteristics curves (b) of 20 nm-thick PMMA of Ag-NPs device embedded with 6 nm-thick Ag-NPs (logogram as Ag-NPs (6nm) device) under weak photo-irradiation (0.015 mW/cm²).

Figure S5. The transfer *I-V* characteristics curves in dark. (a) 10 nm-thick PMMA of Ag-NPs devices as a function of the thickness of embedded Ag-NPs, and (b) Ag-NPs devices (6 nm thick Ag-NPs) as a function of PMMA thicknesses.

Figure S6. (a) The threshold voltage (V_{th0}) and the on/off ratio (I_{on}/I_{off}) of 10 nm-thick PMMA of Ag-NPs devices in dark as a function of Ag-NPs thicknesses. (b) the threshold voltage (V_{th0}) and the on/off ratio (I_{on}/I_{off}) of 6 nm-thick Ag-NPs of Ag-NPs devices in dark as a function of PMMA thicknesses.