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A Finding the steady-state solution of a linear cascade

Consider the case of a linear cascade of arbitrary size, N : following equations (1) and (2) in the

paper, we can write down the dynamics of each element in the cascade Xj using Hill function,

except for the �rst element X1 which has an in�ow rate directly proportional to the expression level

of the input signal Sx (only for mathematical convenience without loss of generality):

dX1

dt = Sx − γX1,
dXj

dt =
V X2

j−1

X2
j−1+K

2 − γXj (for j = 2, ..., N).
(1)
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Assuming that the stimulus Sx is a Heaviside step function of magnitude β, i.e. Sx(t) = βθ(t),

the steady-state solution can be found by solving the following set of coupled di�erential equations

dX∗
1

dt = Sx − γX∗
1 = 0 ⇒ X∗

1 = β
γ ,

dX∗
2

dt =
V X∗2

1

X∗2
1 +K2

− γX∗
2 = 0 ⇒ X∗

2 (β,K) = V
γ

(
β2

β2+K2

)
,

.

.

dX∗
N

dt =
V X∗2

N−1

X∗2
N−1+K

2
− γX∗

N = 0 ⇒ X∗
N (β,K) = V

γ

(
X∗2

N−1(β,K)

X∗2
N−1(β,K)+K2

)
.

(2)

Finding the steady-state values X∗
j is equivalent to �nding the �xed points of a one-dimensional

map X∗
j+1 = 1/γ A(X∗

j ,K). Thus, the �xed points can be found

A(X∗,K) = γX∗ ⇒ X∗ = V
γ

(
X∗2

X∗2+K2

)
⇒


X∗

(1) =
V+
√
V 2−4γ2K2

2γ

X∗
(2) =

V−
√
V 2−4γ2K2

2γ

X∗
(3) = 0

. (3)

By changing the parameter K for a �xed V/(2γ), we have three possible scenarios (see �gure

S.1):

(i) K > V
2γ : One stable �xed point at X∗ = 0.

(ii) K = Kcrit =
V
2γ : One stable �xed point at X∗ = 0 and one saddle at X∗ = V

2γ .

(iii) K < V
2γ : Two stable �xed points at X∗ = 0 and X∗ =

V+
√
V 2−4γ2K2

2γ , one unstable point at

X∗ =
V−
√
V 2−4γ2K2

2γ .

Thus, depending on the strength of the input signal β, degredation rate γ, maximum expression

level V , and the value of K, the steady-state solution may converge to di�erent stable points (see

�gure S.1).

B Linear cascade with one extra interaction at di�erent po-

sitions

Now, we introduce an extra interaction of length one to the linear cascade at the transition point

K = Kcrit (see the curved arrows in �gure S.2a). We note that any extra interaction of length one is

hypothetical since it implies that one element of the cascade is directly activating another element

in two independent ways, i.e. one via the curved arrow and the other via the backbone linear

sequence of activation, which might not be biologically meaningful, but serves as a mathematical

tool to study the changes in the steady-state solution of the cascade in the presence of an extra

interaction of minimal length. By changing the position of the curved arrow along the cascade, we
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Figure S.1: Stability analysis of a linear signaling cascade with activating interactions (for the numerical

results demonstrated, we set γ = 1). (a) When K > Kcrit , there is only one stable �xed point at

X∗
(3) = 0. Therefore, as the input signal is transmitting through the cascade, it will eventually die-out

(K = 0.75 > Kcrit = 0.5). (b) For K = Kcrit, the system has one stable and one saddle points at X∗
(3) = 0

and X∗ = 0.5, respectively. In this case, if the magnitude of the input is su�ciently high, i.e. β ≥ 0.5,

then the steady-state level of the output approaches X∗ = 0.5. (c) When K < Kcrit, the system has

two stable �xed points at X∗
(3), X

∗
(1), and one unstable point at X∗

(2), respectively. If β > X∗
(2), then the

steady-state level of the output approaches its non-zero stable �xed point X∗
(1) (in this plot K = 0.45). (d)

The steady-state level of each element in the cascade (i.e. j = 1, 2, . . . , 7) is demonstrated for the case of

K = Kcrit (the lines are only for the guidance of the eye). The x-axis shows the jth element of the cascade

and the y-axis is the corresponding steady-state level. As demonstrated in part (b), if β ≥ 0.5, then the

input signal approach towards X∗ = 0.5, otherwise it will die out eventually.
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measure the half-life and steady-state response of the output as a function of curved arrow position.

In order to explain the variations (see �gures S.2c and S.2d), we demonstrate how the steady-state

solution of the doubly interacting element X∗
m changes as the curved arrow is introduced into the

cascade (see �gure S.3).

As demonstrated in �gure S.3, at the transition point K = Kcrit, assuming the input signal has

magnitude β = 1 and V = 1, the steady-state solution follows along the blue curve X∗2

/(X∗2

+

K2
crit), except for the doubly interacting element X∗

3 where it jumps towards the green or red

curve (see �gures S.3a and S.3b). Each time we apply the mapping function 3, it gives the steady-

state solution of the next element until reaching the steady-state of the output X∗
N . When a

repressing regulation of length one acts on X3 (forming an incoherent feedforward loop between

the two elements X2 and X3), it shifts the �xed point of the system to X∗
(3) = 0. That is why the

steady-state of the output in �gure S.2d decreases as we increase the length of the linear cascade

N . However, in the case of a coherent feedforward loop between the two elements X2 and X3, the

�xed point of the system does not shift and, consequently, the stead-state solution approaches to a

non-zero value as demonstrated in S.2b. On the other hand, when we put the coherent feedforward

loop further down the cascade, it shifts the �xed point. Consequently, the steady-states approach

zero. Another interesting e�ect emerges from this system when the activating curved arrow acts on

elements after the sixth element, i.e. m > 7. As it is demonstrated in �gure S.2c, the steady-state

values start to relax back to higher levels as the curved arrow gets closer to the end of the cascade.

This occurs because the steady-state solution takes fewer steps before reaching the last element.

In other words, in the case where m is close to N , the mapping function for the steady-state

solution can be applied for fewer times, ultimately pushing the solution to higher values. A similar

phenomenon explains the increasing trend in the steady-state of the output for a linear cascade

with an incoherent feedforward loop in �gure S.2d). We also note that the numerical results for the

half-life time shows a decreasing trend for both the linear cascade with one incoherent feedforward

loop and a cascade with a coherent feedforward loop for m > 7 (see �gures S.2c and S.2e).

C Comparing the e�ect of topology on the steady-state solu-

tion

The critical dependency of steady-states on the type and position of the curved arrows lies on the

changes that di�erent circuit topologies bring to the steady-state solution of the doubly regulated

elements of the cascade. In the case of one activating and one repressing extra interaction for

CαI, i.e. the �rst curved arrow is an activating (A) and the second one is a repressing (R) Hill

function (represented in �gure S.4), for example, the e�ect of the three circuit topologies, with a

�xed average contact order equal to 3, on the steady-state levels of the doubly regulated elements

in the cascade can be calculated using the following set of equations:
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Figure S.2: The e�ect of a (in)coherent feedforward loop of length one in the response of a linear cascade is

demonstrated. (a) Cascades of size N = 6 and N = 17 are demonstrated. An activating/reppressing curved

arrow of length one is placed at di�erent positions along the chain. The steady-state level and half-life time

of the output is demonstrated as a function of (b) an activating curved arrow and (c) a repressing curved

arrow. The numerical results are obtained for β = 1, V/(2γ) = 1/2, KjA = Kcrit = 0.5, and KR = 0.9 (the

lines are only drawn for the guidance of eye).
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Figure S.3: Stability analysis of a linear cascade with one extra interaction of length one emerging from X2

and acting on X3. (a) An activating and (b) a repressing curved arrow of unit length is regulating X3 and

causes its steady-state level to decrease (green and red curves, respectively) from the expected steady-state

solution of a linear cascade with no extra interaction (blue curve). In both cases, downstream elements

proceeding X3 should trace back the steady-state solution of the linear cascade (blue curve) as there are no

further extra interaction in the cascade. In (a), since the extra activation does not cause the steady-state

solution to jump over the �xed pointX∗ = 0.5, the steady-state level of the output X∗
N → 0.5. If the

magnitude of the input signal β is su�ciently smaller than 1, the curved arrow can shift the steady-state

of X∗
3 to drop below the �xed point X∗ = 0.5. However, in (b), the repressing interaction pushes the

steady-state solution below the �xed point and the steady-state level of the output, ultimately, approaches

zero.
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(i) For Cross con�guration:

X∗
m = A(X∗

m−1,KA)×A(X∗
m−3,KA),

X∗
m+2 = A(X∗

m+1,KA)×R(X∗
m−1,KR),

(4)

(ii) for Parallel con�guration:

X∗
m = A(X∗

m−1,KA)×A(X∗
m−2,KA),

X∗
m+1 = A(X∗

m,KA)×R(X∗
m−3,KR),

(5)

(iii) and for Series con�guration:

X∗
m = A(X∗

m−1,KA)×A(X∗
m−3,KA),

X∗
m+4 = A(X∗

m+3,KA)×R(X∗
m+1,KR).

(6)

The set of equations 4, 5, and 6 clarify how the steady-state of the doubly interacting elements

depend on the type of interaction, circuit topology, and the position of the curved arrows. For a

given set of reaction rates K, KA, and KR, the system can assume di�erent �xed points (see �gures

S.4b, S.4c, and S.4d). Figure S.5 gives an overview of all possible circuit topologies with coherent

and incoherent feedforward loops we considered in this paper.

D Time-dependent input signal

The method works as follows: Consider a coherent feedforward loop where X1 activates X2 and X3,

and X2 activates X3. Then, set the input signal to Sx(t) = s0(1 + αsin(ωt)), and let the functions

h1(X1, Sx), h2(X2, X1), and h3(X3, X2, X1) denote the net production rates for X1, X2, and X3,

respectively. Hence, we can write the dynamics for each element as the following:

dX1

dt = h1(X1, Sx) = s0(1 + αsin(ωt))− γX1,
dX2

dt = h2(X2, X1) = A(X1(t))− γX2,
dX3

dt = h3(X3, X2, X1) = A(X2(t))× fcv(X1(t))− γX3.

(7)

De�ning the deviations around the steady-state levels of each element to be |δXi| = Xi − X∗
i

and δSx = Sx − sx0 , we assume that, to the �rst-order Taylor series expansion, they are small.

Thus, we only keep the �rst leading terms in δXi and δSx:

dδX1

dt = g1δSx + ωc1δX1,
dδX2

dt = g21δX1 + ωc2δX2,
dδX3

dt = g32δX2 + g31δX1 + ωc3δX3,

(8)

7



(a)

 
 

 

(b)

X
*

A(X*) = X*2/(X*2+0.42)

A(X*
4)*A(X

*
2)

A(X*
6)*R(X

*
4)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

X
*

(c)

X
*

A(X*) = X*2/(X*2+0.42)

A(X*
4)*A(X

*
3)

A(X*
5)*R(X

*
2)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

X
*

(d)

X
*

A(X*) = X*2/(X*2+0.42)

A(X*
4)*A(X

*
2)

A(X*
8)*R(X

*
6)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

X
*

Figure S.4: (a) Three realizations of the CαI con�guration (i.e. CXI, CPI, and CSI con�gurations from

left to right, respectively, are demonstrated). (b) In this CXI realization, X2 activates X5 and X4 represses

X7. While the two curved arrows push the steady-state value of X7 to a very low amount, X∗
7 is still bigger

than the unstable �xed point at X∗ = 0.2. Therefore, the steady-state values after X∗
7 start to increase

again by the activation interactions in the linear cascade and the input signal is restored. (c) In this CPI

realization, X3 activates X5 and X2 represses X6 such that X∗
6 becomes smaller than the unstable �xed

point. Hence, the signal will die out eventually for the downstream elements. (d) In this CSI realization,

after X2 activates X5, the remaining elements of the cascade can restore the input signal by the chain of

activation interaction in the intermediate elements before X6 represses X9. Therefore, the decrease in the

steady-state of X9 is not big enough for the system to hop over the unstable �xed point and eventually

approach to the non-trivial �xed point X∗ = 0.8.
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Figure S.5: Overview of cascades with di�erent circuit topologies and constant contact order (CO=2).

where the gains and cut-o� frequencies depend on the properties of the cascade

g1 = ∂h1(X1,Sx)
∂Sx

)
(X∗

1 ,s0)

= 1,

g21 = ∂h2(X2,X1)
∂X1

)
(X∗

2 ,X
∗
1 )

=
−2X∗3

1

(K2
A+X∗2

1 )2
+

−2X∗
1

K2
A+X∗2

1

,

g32 = ∂h3(X3,X2,X1)
∂X1

)
(X∗

3 ,X
∗
2 )

= fcv(X
∗
1 (t))

∂
∂X2

(A2(X2)

)
X∗

2

,

g31 = ∂h3(X3,X2,X1)
∂X1

)
(X∗

3 ,X
∗
1 )

= A2(X2)

)
X∗

2

∂
∂X1

(fcv(X1)),

ωci = ∂hi

∂Xi

)
X∗

i

= −γ.

(9)

Solving the coupled di�erential equation 8, we �nd (for t large enough and ω � ωc1, ωc2, ωc3):

δX1(t) = − α
ω2+ω2

c1
[ωc1sin(ωt) + ωcos(ωt)] ,

δX2(t) = − g21α
(ω2+ω2

c1)(ω
2+ω2

c2)

[
(ω2 − ωc1ωc2)sin(ωt)− ω(ωc1 + ωc2)cos(ωt)

]
,

(10)

δX3(t) = −
1

(ω2 + ω2
c2)

[
g31

αω2

ω2 + ω2
c1

sin(ωt) + g32g21

α

ω2 + ω2
c1

ω

ω2 + ω2
c1

(ω(ωc1 + ωc2)cos(ωt))

− g31(ωc1 + ωc2)
αω

ω2 + ω2
c1

cos(ωt) +O

(
1

ω2

)]
.

(11)
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Thus, in the limit of large input frequency, ω � ωc1, ωc2, the amplitude of variation for each

element in the feedforward loop can be simpli�ed as:

|δX1| ∝
√

α2

ω2+ω2
c1
,

|δX2| ∝
(

α
ω2+ω2

c1

)(
g21

ω2+ω2
c2

)
ω2,

|δX3| ∝
(

g31
ω2+ω2

c1

)(
α

ω2+ω2
c2

)
ω2.

(12)
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