Electronic Supplementary Information

Excitation-dependent Local Symmetry Reversal in Single Host Lattice

Phosphors Ba₂A(BO₃)₂:Eu³⁺ [A = Mg and Ca] with Tunable Emission Colours

S. Jayakiruba^a, S. Selva Chandrasekaran^{a, b}, P. Murugan^{a, b}, N. Lakshminarasimhan^{a, b*}

^aFunctional Materials Division ^bAcademy of Scientific & Innovative Research (AcSIR) CSIR-Central Electrochemical Research Institute Karaikudi 630 003, Tamil Nadu India.

We used ¹¹B isotope in MAS-NMR studies due to its higher natural abundance (80.22%) than that of ¹⁰B isotope (19.9 %).^{1,2} The nucleus ¹¹B with I = 3/2 possesses a quadrupole moment that couples with the local electric field gradient resulting in anisotropic peak shapes. The spectra obtained using 12 kHz spinning speed are shown in Fig. S1. The spectra of all the samples were recorded at different spinning speeds of 5, 10 and 12 kHz to identify the spinning side bands (Fig. S2). The spectra show two broad signals around 22 and 10 ppm that correspond to ¹¹B in the trigonal environment as $-BO_3$ units.³ The obtained isotropic chemical shift (δ_{iso}) values are similar to the one reported for La₂O₃.B₂O₃ confirming the presence of isolated $-BO_3$ units in the crystal structure.² The obtained lower δ_{iso} in Ba₂Ca(BO₃)₂ (21.27 ppm) when compared to that of in Ba₂Mg(BO₃)₂ (22.45 ppm) can be ascribed to the differences in the symmetry of $-BO_3$ group and the chemical environment around ¹¹B in these compounds as the neighbouring cations are different. Thus, the observed signals in the chemical shift ranges (21.3-22.2 ppm) and (8.9-10.5

ppm) confirm the presence of trigonal $-BO_3$ units in all borates.³ The signal observed at 4 ppm could be due to pyramidal O $-BO_3$ group.⁴ However, this signal is not prominent in the spectra of BaMBO:Eu@Ba and BaCBO:Eu@Ba revealing a change in the environments around B when Eu³⁺ substitutes Ba²⁺ in both the host lattices.

Sample		Chemical shift (δ_{iso} , pp	m)
Ba ₂ Mg(BO ₃) ₂	22.45	10.23	4.30 (s)
$Ba_{1.90}Eu_{0.05}K_{0.05}Mg(BO_3)_2$	22.21	10.60	-
$Ba_2Mg_{0.90}Eu_{0.05}Li_{0.05}(BO_3)_2$	22.27	10.55	4.55 (w)
Ba ₂ Ca(BO ₃) ₂	21.27	9.07	4.47
Ba _{1.90} Eu _{0.05} K _{0.05} Ca (BO ₃) ₂	21.08	9.29	-
$Ba_2Ca_{0.90}Eu_{0.05}Na_{0.05}(BO_3)_2$	21.11	9.29	4.32

 Table S1.
 ¹¹B MAS-NMR chemical shift values

Fig. S1. ¹¹B MAS-NMR spectra of (a) BaMBO, BaMBO:Eu@Ba and BaMBO:Eu@Mg. Fig. (b) includes the spectra of BaCBO, BaCBO:Eu@Ba and BaCBO:Eu@Ca. BaMBO and BaCBO represent Ba₂Mg(BO₃)₂ and Ba₂Ca(BO₃)₂, respectively.

- Fig. S2.
- The ¹¹B
- MAS

NMR

spectra

of (a)

 $Ba_{2}Mg(BO_{3})_{2}, (b) Ba_{1.90}Eu_{0.05}K_{0.05}Mg(BO_{3})_{2}, (c) Ba_{2}Mg_{0.90}Eu_{0.0}Li_{0.05}(BO_{3})_{2}, (d) Ba_{2}Ca(BO_{3})_{2}, (e) Ba_{1.90}Eu_{0.05}K_{0.05}Ca(BO_{3})_{2} and (f) Ba_{2}Ca_{0.90}Eu_{0.05}Na_{0.05}(BO_{3})_{2} recorded at 5, 10 and 12 kHz spinning speeds.$

FT-IR spectroscopic technique was used to find the stretching and bending vibration modes of borate group in the synthesized samples. FT-IR spectra of parent hosts and Eu³⁺substituted borates are shown in Fig. S3. The strong, broad absorption bands at 1230 and 1220 cm⁻¹ and weak absorptions at 1442 and 1448 cm⁻¹ in Ba₂Mg(BO₃)₂ and Ba₂Ca(BO₃)₂, respectively, indicate the doubly degenerate asymmetric stretching vibration mode of planar triangular -BO₃ group.⁵ The sharp absorption bands in the spectra of pure and Eu³⁺-substituted $Ba_2Mg(BO_3)_2$ 590 and 753 cm⁻¹ correspond doubly at to degenerate in-plane bending modes of O-B-O and non-degenerate out-of-plane bending vibrations of B-O, respectively.⁶ The corresponding vibrations in pure and Eu³⁺-substituted Ba₂Ca(BO₃)₂ are at 592 and 741 cm⁻¹. The in-plane bending modes of O-B-O are prominent and equal in intensity with that of out-of-plane bending vibration in the spectra of Ba₂Mg(BO₃)₂ samples whereas it is less intense in Ca analogues. The differences in the position of vibrational bands in Ba₂Mg(BO₃)₂ and Ba₂Ca(BO₃)₂ and their features are due to the differences in the chemical environments and symmetry of -BO3 group. In Ba2Mg(BO3)2, all three B-O bonds are equal whereas in $Ba_2Ca(BO_3)_2$, one B–O bond is longer than the other two.^{7,8} Thus, the symmetry of –BO₃ groups are different in both these compounds resulting in the observed difference in the relative intensities of in-plane and out-of-plane bending vibrations.

Fig. S3. FT-IR spectra of (a) BaMBO, BaMBO:Eu@Ba and BaMBO:Eu@Mg. Fig. (b) shows the spectra of BaCBO, BaCBO:Eu@Ba and BaCBO:Eu@Ca. BaMBO and BaCBO represent Ba₂Mg(BO₃)₂ and Ba₂Ca(BO₃)₂, respectively.

 λ_{em} = 593 nm

 Fig.
 S4.
 PL

 excitation
 spectra

 of Eu^{3+} substituted

 (a)
 $Ba_2Mg(BO_3)_2$

 and
 (b)

 $Ba_2Ca(BO_3)_2$.

 λ em. = 593 nm.

Fig. S5. PL emission spectra of (a) BaMBO:Eu@Ba, (b) BaMBO:Eu@Mg, (c) BaCBO:Eu@Ba, and (d) BaCBO:Eu@Ca shown for select excitation wavelengths in the region between 300 and 395 nm. * represents the second order reflection from the instrument.

and (d) BaCBO:Eu@Ca shown for select excitation wavelengths. * represents the second order reflection from the instrument.

Ion	Coordination number	Ionic radius (Å)*
Ba ²⁺	9	1.47
K^+	9	1.55
Eu ³⁺	9	1.12
Mg^{2+}	6	0.72
Li^+	6	0.76
Eu ³⁺	6	0.95
Ca ²⁺	6	1.00
Na ⁺	6	1.02

Table. S2. The coordination number and the respective ionic radii of the cations and charge compensating ions in $Ba_2Mg(BO_3)_2$ and $Ba_2Ca(BO_3)_2$.

* all ionic radii are for coordination by O atoms. Values are from R. D. Shannon, C. T. Prewitt, *Acta Crystallogr*.A32 (1976) 751.

Table S3. The emission intensity ratios of ${}^{5}D_{0} \rightarrow {}^{7}F_{1}/{}^{5}D_{0} \rightarrow {}^{7}F_{2}$ for the four samples under different excitation wavelengths.

	${}^{5}\mathrm{D}_{0} \rightarrow {}^{7}\mathrm{F}_{1} / {}^{5}\mathrm{D}_{0} \rightarrow {}^{7}\mathrm{F}_{2}$			
λ exc. (nm) \rightarrow	253	268	288	395
Sample	_			
BaMBO:Eu@Ba	3.5356	1.9254	0.5300	0.4646
BaMBO:Eu@Mg	2.8238	1.0293	0.5110	0.4882
BaCBO:Eu@Ba	2.0130	1.8022	1.1941	0.7768
BaCBO:Eu@Ca	10.9725	8.6934	5.3748	0.8995

	${}^{5}D_{0} \rightarrow {}^{7}F_{2} / {}^{5}D_{0} \rightarrow {}^{7}F_{1}$			
λ exc. (nm) \rightarrow	253	268	288	395
Sample				
BaMBO:Eu@Ba	0.2828	0.5194	1.8870	2.1524
BaMBO:Eu@Mg	0.3541	0.9715	1.9570	2.0484
BaCBO:Eu@Ba	0.4968	0.5549	0.8375	1.2873
BaCBO:Eu@Ca	0.0911	0.1150	0.1861	1.1118

Table S4. The emission intensity ratios of ${}^{5}D_{0} \rightarrow {}^{7}F_{2}/{}^{5}D_{0} \rightarrow {}^{7}F_{1}$ for the four samples under different excitation wavelengths.

Fig. S7. Variation in ${}^{5}D_{0} \rightarrow {}^{7}F_{1} / {}^{5}D_{0} \rightarrow {}^{7}F_{2}$ and ${}^{5}D_{0} \rightarrow {}^{7}F_{2} / {}^{5}D_{0} \rightarrow {}^{7}F_{1}$ in BaMBO:Eu@Ba, BaMBO:Eu@Ba and BaCBO:Eu@Ca under different excitation wavelengths.

Fig. S8. Powder XRD patterns of (a) $Ba_{1.98}Eu_{0.01}K_{0.01}Mg_{0.98}Eu_{0.01}Li_{0.01}(BO_3)_2$ and (b) $Ba_{1.98}Eu_{0.01}K_{0.01}Ca_{0.98}Eu_{0.01}Na_{0.01}(BO_3)_2$.

Fig. S9. Room temperature PL emission spectra of (a) $Ba_{1.98}Eu_{0.01}K_{0.01}Mg_{0.98}Eu_{0.01}Li_{0.01}(BO_3)_2$ and (b) $Ba_{1.98}Eu_{0.01}K_{0.01}Ca_{0.98}Eu_{0.01}Na_{0.01}(BO_3)_2$. $\lambda_{exc.} = 395$ nm. The insets show the spectra in the region of ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ transition.

Fig. S10. Structural models of (a) $Ba_2Mg(BO_3)_2$ and (b) $Ba_2Ca(BO_3)_2$. The oxygen coordination in (c) $Ba_2Mg(BO_3)_2$ and (d) $Ba_2Ca(BO_3)_2$. The structures were drawn using VESTA software with the atomic coordinates available in Refs. 7 and 8 [9].

Compounds	Theoretical lattice constants			
	а	!		С
Ba ₂ Mg(BO ₃) ₂	5.355		16.343	
$Ba_2Mg_{0.834}Eu_{0.083}Li_{0.083}(BO_3)_2$	5.383		16.439	
$Ba_{1.916}Eu_{0.042}K_{0.042}Mg(BO_3)_2$	5.346		16.452	
	а	b	С	β
$Ba_2Ca(BO_3)_2$	9.674	5.443	6.591	119.687
$Ba_2Ca_{0.75}Eu_{0.125}Na_{0.125}(BO_3)_2$	9.689	5.445	6.591	120.001
$Ba_{1.875}Eu_{0.0625}K_{0.0625}Ca(BO_3)_2$	9.658	5.433	6.580	119.940

Table S5. Lattice parameters (in Å) and angle β (in ⁰) of optimized structures of pure and Eu³⁺-substituted Ba₂MgB₂O₆and Ba₂Ca(BO₃)₂Compounds.

References:

- 1. J. W. E. Weiss and D. L. A. Bryce, J. Phys. Chem. A 2010, 114, 5119-5131.
- 2. S. Kroeker and J. F. Stebbins, Inorg. Chem. 2001, 40, 6239-6246.
- G. L. Turner, L. A. Smith, R. J. Kirkpatrick and E. Oldfield, J. Magn. Reson. 1986, 67, 544-550.
- B. Zhou, W. Sun, B-C. Zhao, J-X. Mi, R. Laskowski, V. Terskikh, X. Zhang, L. Yang, S. M. Botis, B. L. Sherriff and Y. Pan, *Inorg. Chem.* 2016, 55, 1970-1977.

- 5. E. Weir and R. A. Shroeder, J. Res. Natl. Bureau Stds. 1964, 68A, 465-487.
- X. Lv, Y. Yang, B. Liu, Y. Zhang, L. Wei, X. Zhao and X. Wang, Vib. Spec. 2015, 80, 53-58.
- 7. A. Akella and D. A. Keszler, Mater. Res. Bull. 1995, 30, 105-111.
- 8. A. Akella and D. A. Keszler, Main Group Met. Chem. 1995, 18, 35-41.
- 9. K. Momma and F. Izumi, J. Appl. Crystallogr. 2011, 44, 1272-1276.