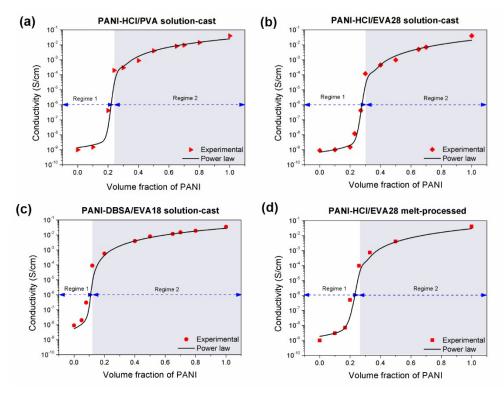
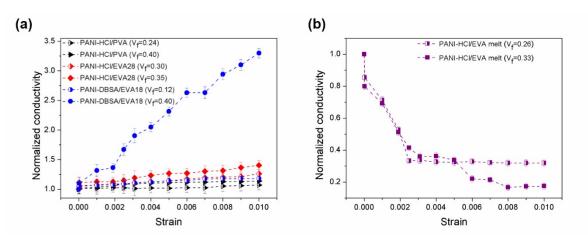
Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2017


Supplementary information

Strain induced insulator-to-semiconductor transition in conducting polymer composites originating from the auxetic behaviour of hierarchical structures


Indu Chanchal Polpaya, C. Lakshmana Rao and Susy Varughese*

Power law at three different regimes corresponding to above, below and at percolation are:

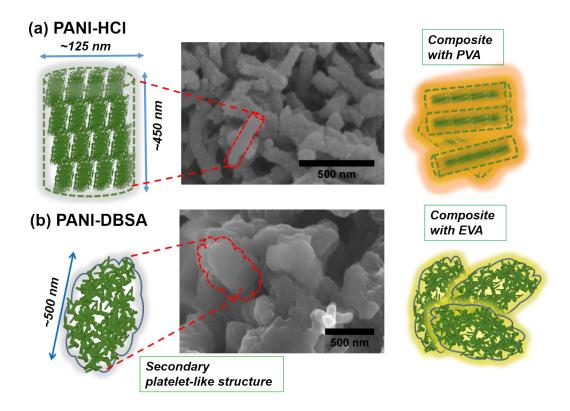

- a) When the volume fraction V_f of PANI in the blend just exceeds the percolation threshold V_{fc} , the conductivity of the composite can be predicted by, $\sigma_c \propto \sigma_1 * (V_f V_{fc})^t$, where, σ_1 is the conductivity of pure PANI and t is the exponent in Power law.
- b) When $V_f < V_{fc}$, conductivity of the composite is predicted by, $\sigma_c \propto \sigma_2 * (V_{fc} V_f)^{-v}$, where, σ_2 is the conductivity of the insulating polymer and v is the exponent in Power law.
- c) When $|V_f V_{fc}| \to 0$, at the cross-over region, the conductivity of the composite is predicted by, $\sigma_c \propto \sigma_2^{\ u} * \sigma_1^{\ 1-u}$ where, $u = \frac{t}{t+v}$

Fig. S1. Conductivity variation with increasing volume fraction of PANI in (a) PANI-HCI/PVA (b) PANI-HCI/EVA28 (c) PANI-DBSA/EVA18 (all solution cast) and (d) PANI-HCI/EVA28 (melt processed), by both experimental and power law fit. Regime 1 corresponds to insulator and Regime 2 to semiconductor.

Fig. S2. Conductivity variation with strain at and above percolation threshold for different PANI composites (a) solution cast showing increase and (b) melt processed showing decrease in conductivity with strain. Half-filled symbols represent composites at percolation and closed symbols represent composites above percolation. The lines are to guide the eye.

Fig. S3. Schematic and SEM images of (a) PANI-HCl consisting of tertiary rod-shaped agglomerates of ~450 nm length and 125 nm dia formed from secondary agglomerates of ~100 nm size, which are formed by the aggregation of 10 nm primary nano-rods. (b) PANI-DBSA consisting of agglomerated circular platelet-like structures of length ~500 nm and thickness ~10 nm formed by the aggregation of primary nano-rods.

Table S1. Experimentally obtained percolation threshold, power law exponents and conductivity for different PANI composites

Composite	Percolation threshold	Power law exponents		Conductivity at V_{fc} (S/cm)
	V_{fc}	T	ν	-
PANI-HCI/PVA	0.24	1.70	0.72	2.0 x 10 ⁻⁴
PANI-HCI/EVA28	0.30	1.90	0.95	1.2 x 10 ⁻⁴
PANI-DBSA/EVA18	0.12	1.70	0.90	0.90x10 ⁻⁴
PANI-HCI/EVA28 (melt processed)	0.26	1.80	0.98	0.90x10 ⁻⁴

Table S2.Poisson's ratio of PANI composites with 1% strain

Sample	Blend ratio	Poisson's ratio	
	(PANI/	$artheta_{\chi\gamma}$	
	insulating	·	
	matrix)		
PANI-HCI/PVA	0/100	0.42-0.48	
	20/80	0.32	
	24/76	0.3	
	40/60	0.1	
PANI-HCI/EVA28	0/100	0.2-0.35	
	28/72	0.187	
	30/70	0.18	
	35/65	0.1	
PANI-DBSA/EVA18	0/100	0.2-0.35	
	8/92	0.16	
	12/88	0.15	
	40/60	0.1	
PANI-HCI/EVA28 melt processed	0/100	0.37	
•	26/74	0.15	
	33/67	0.12	