Band structure modification of the thermoelectric Heusler-phase TiFe₂Sn

via Mn substitution

Tianhua Zou^a, Tiantian Jia^{bc}, Wenjie Xie^{*a}, Yongsheng Zhang^{*bc}, Marc Widenmeyer^a, Xingxing Xiao^a, Anke Weidenkaff^{*a}

- a. Institute for Materials Science, University of Stuttgart, 70569 Stuttgart, Germany. Email: xie@imw.uni-stuttgart.de; weidenkaff@imw.uni-stuttgart.de
- b. Key laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, 230031 Hefei, P.R. China. E-mail: yshzhang@theory.issp.ac.cn
- c. University of Science and Technology of China, 230026 Hefei, P.R. China

1. Rietveld refinement results

-		1 7		2 7	л	
	Mn content/ x	Unit cell parameter <i>a</i> / Å	R_p / %	R_{wp} / %	$R_{\rm Bragg}$ / %	χ^2
	0	6.0623(7)	4.35	5.68	1.06	1.50
	0.01	6.0602(7)	4.02	5.12	1.47	1.32
	0.0156	6.0557(7)	4.31	5.52	1.77	1.31
	0.0185	6.0549(7)	4.17	5.26	1.43	1.28
	0.02	6.0584(7)	4.26	5.49	1.37	1.42
	0.03	6.0593(7)	4.22	5.46	1.45	1.71
	0.05	6.0614(7)	4.45	5.7	1.22	1.36

Table S1 Results of Le Bail refinements of powder X-ray diffraction data of TiFe_{2-x}Mn_xSn.

The Rietveld refinement results show that the deviation of lattice parameter is in the area of about 0.1% among all TiFe_{2-x}Mn_xSn samples. It should be kept in mind that minor variations of the Ti and Sn contents will strongly influence the detected unit cell parameters of the Full-Heusler phase TiFe_{2-x}Mn_xSn, as observed from the formation of small amounts of secondary phases (e.g. TiO₂ and Sn, s. Figure S1 and Figure S2). Typically, very weak reflections for the secondary phases were observed, because the impurity phase content was close to detection limit of our X-ray diffractometer. A significant amount of TiO₂ was only recognized in the sample x = 0.0156. On the other hand, Rietveld refinements of the collected diffraction data (s. Figure S1) to determine the actual phase compositions were strongly hampered by the observed X-ray fluorescence generated by the interaction of Cu- K_{α} radiation with Fe and Mn atoms, respectively, leading to an increased measurement background, especially at higher 2 Θ angles and the small quantities of impurity phases.

Figure S1 Le Bail refinements of the powder X-ray diffraction data of a) $TiFe_2Sn$, b) $TiFe_{1.99}Mn_{0.01}Sn$, c) $TiFe_{1.9844}Mn_{0.0156}Sn$, d) $TiFe_{1.9815}Mn_{0.0185}Sn$, e) $TiFe_{1.98}Mn_{0.02}Sn$, f) $TiFe_{1.97}Mn_{0.03}Sn$, and g) $TiFe_{1.95}Mn_{0.05}Sn$.

2. SEM image

Figure S2. (a)Typical scanning electronic microscopy image of TiFe₂Sn sample. (b) An energy dispersive X-ray spectrum (EDS) of the matrix. (c) EDS of an impurity particle in the compound.

3. Total DOS of TiFe₂Sn compound

Figure S3. The total DOS of $TiFe_2Sn$ using the states/eV*fu unit, the large energy scale (-11eV, 3eV) and smaller smearing value.