Laser Photolysis Studies of ω-Bond Dissociation in Aromatic Carbonyls Having C-C Triple Bond Stimulated by Triplet Sensitization

Minoru Yamaji, ${ }^{1, *}$ Ami Horimoto ${ }^{2}$ and Bronislaw Marciniak ${ }^{3}$
${ }^{1}$ Division of Molecular Science, Graduate School of Science and Engineering, Gunma University, Kiryu, Gunma 376-8515, Japan
${ }^{2}$ Education Program of Materials and Bioscience, Graduate School of Science and Engineering, Gunma University, Kiryu, Gunma 376-8515, Japan
${ }^{3}$ Faculty of Chemistry, Adam Michiewicz University, Umultowska 89 b, 61-614 Poznan, Poland

Contents

1. Preparation and NMR data for compounds 2-4@X.
P. 2
2. Quenching data for triplet energy transfer. P. 9
3. Results of DFT calculation P. 12

1. Preparation and NMR data for compounds 2-4@X.

1-1. Synthesis of $2 @ X(X=O P h$ and $S P h)$.

1-1-1. Preparation of $\mathbf{2} @ \mathrm{OPh}$

Step 1. Synthesis of $\mathrm{PhOHECH}_{2} \mathbf{O P h}$

To a THF solution ($1 \mathrm{M}, 2.3 \mathrm{ml}$) of ethylmagnesium bromide (2.3 mmol), phenylpropargyl ether (0.3 $\mathrm{ml}, 2 \mathrm{mmol}$) in THF (13 ml) was dropwise added under N_{2} atmosphere at room temperature, and the solution was stirred for 30 min at $40^{\circ} \mathrm{C}$. After cooling to room temperature, benzaldehyde $(0.23 \mathrm{ml}$, 2 mmol) in THF (12 ml) was dropwise added at room temperature, and the solution was stirred under N_{2} atmosphere at room temperature for 3 h . The crude product was extracted with benzene, washed with saturated aqueous NaHCO_{3} and brine, and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, which was purified by chromatography on silica gel using a mixture of hexane/chloroform ($5: 1 \mathrm{v} / \mathrm{v}$) as the eluent to provide $210 \mathrm{mg} \mathrm{PhOHECH} 2 \mathrm{OPh}(44 \%)$. Pale yellow liquid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.28-7.38(\mathrm{~m}$, $7 \mathrm{H}), 6.96-7.02(\mathrm{~m}, 3 \mathrm{H}), 5.48(\mathrm{~s}, 1 \mathrm{H}) 4.77(\mathrm{~d}, 2 \mathrm{H}, J=1.8 \mathrm{~Hz}), 1.44(\mathrm{~s}, 1 \mathrm{H})$.

Step 2. Synthesis of 2@OPh

$\mathrm{PhOHCH}_{2} \mathrm{OPh}(210 \mathrm{mg}, 0.88 \mathrm{mmol})$ in dichloromethane $(10 \mathrm{ml})$ was stirred in the presence of MnO_{2} ($539 \mathrm{mg}, 6.2 \mathrm{mmol}$) for 2 h at room temperature. The solution was filtrated and the solvent was evaporated. The residue was chromatographed on silica gel using a mixture of hexane/ethyl acetate $(5: 1 \mathrm{v} / \mathrm{v})$ as the eluent to provide $187 \mathrm{mg} \mathrm{BECH}_{2} \mathrm{OPh}$ (yield 90%). Yellow liquid. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 8.01(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.56-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.37(\mathrm{~m}, 2 \mathrm{H})$, 7.03-7.07 (m, 3H), 4.98 ($\mathrm{s}, 2 \mathrm{H}$).

1-1-2. Preparation of 2@SPh

Step 1. Synthesis of $\mathbf{P h O H E C H}_{2} \mathbf{S P h}$

To a THF solution ($1 \mathrm{M}, 2.2 \mathrm{ml}$) of ethylmagnesium bromide (2.2 mmol), phenylpropargyl sulfide ($0.29 \mathrm{ml}, 2 \mathrm{mmol}$) in THF (10 ml) was dropwise added under N_{2} atmosphere at room temperature, and the solution was stirred for 30 h at room temperature. After cooling to room temperature, benzaldehyde $(0.23 \mathrm{ml}, 2 \mathrm{mmol})$ in THF (10 ml) was dropwise added at $0^{\circ} \mathrm{C}$, and the solution was stirred under N_{2} atmosphere at room temperature for 5 h . The crude product was extracted with benzene, washed with saturated aqueous NaHCO_{3} and brine, and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, which was purified by chromatography on silica gel using a mixture of hexane/chloroform ($5: 1 \mathrm{v} / \mathrm{v}$) as the eluent
to provide $84 \mathrm{mg} \mathrm{PhOHECH}_{2} \mathrm{SPh}$. Yield 17%. Pale yellow liquid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}$ 7.24-7.38 (m, 10H), $5.41(\mathrm{~s}, 1 \mathrm{H}) 3.68(\mathrm{~d}, 2 \mathrm{H}, J=1.8 \mathrm{~Hz}), 2.03(\mathrm{~s}, 1 \mathrm{H})$.

Step 2. Synthesis of 2@SPh

$\mathrm{PhOHCH}_{2} \mathrm{SPh}\left(84 \mathrm{mg}, 0.3 \mathrm{mmol}\right.$) in dichloromethane (3 ml) was stirred in the presence of MnO_{2} ($262 \mathrm{mg}, 2.1 \mathrm{mmol}$) for 2 h at room temperature. The solution was filtrated and the solvent was evaporated. The residue was chromatographed on silica gel using a mixture of hexane/ ethyl acetate $(5: 1 \mathrm{v} / \mathrm{v})$ as the eluent to provide 30 mg 2@SPh. yield 39%. Yellow liquid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.93(\mathrm{dd}, 2 \mathrm{H}, J=9.7 \mathrm{~Hz}), 7.51-7.58(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.41(\mathrm{~m}, 5 \mathrm{H}), 3.96(\mathrm{~s}, 2 \mathrm{H})$.

1-2. Synthesis of 3@X (X=OPh and SPh)

1-2-1. Preparation of 3@OPh

Triethylanime (TEA, 14 ml) solution of phenylpropargyl ether ($0.12 \mathrm{ml}, 0.97 \mathrm{mmol}$), CuI (20 mg , $0.097 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(35 \mathrm{mg}, 0.049 \mathrm{mmol})$ and 4-iodobenzophenone $300 \mathrm{mg}(0.97 \mathrm{mmol})$ was stirred under N_{2} atmosphere for 3 h at room temperature. Benzene (100 ml) was added, and filtrated. The solution was washed with aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, saturated aqueous NaHCO_{3} and brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The crude product was purified by column chromatography on silica gel with hexane/ethyl acetate ($5: 1, \mathrm{v} / \mathrm{v}$) as the developing solvent to provide $244 \mathrm{mg} \mathbf{3} @ \mathrm{OPh}$. Yield 81%. Pale yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 7.74-7.78(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.61(\mathrm{~m}, 5 \mathrm{H}), 7.33(\mathrm{t}, 2 \mathrm{H}$, $J=8.7 \mathrm{~Hz}), 6.99-7.06(\mathrm{~m}, 3 \mathrm{H}), 4.94(\mathrm{~s}, 2 \mathrm{H})$.

1-2-2. Preparation of 3@SPh

Triethylanime (TEA, 11 ml) solution of phenylpropargyl sulfide ($0.13 \mathrm{ml}, 0.97 \mathrm{mmol}$), CuI (20 mg , $0.097 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(35 \mathrm{mg}, 0.049 \mathrm{mmol})$ and 4-iodobenzophenone $300 \mathrm{mg}(0.97 \mathrm{mmol})$ was stirred under N_{2} atmosphere for 3 h at room temperature. Benzene (100 ml) was added, and filtrated. The solution was washed with aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, saturated aqueous NaHCO_{3} and brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The crude product was purified by column chromatography on silica gel with hexane/ethyl acetate ($9: 1, \mathrm{v} / \mathrm{v}$) as the developing solvent to provide $273 \mathrm{mg} 3 @ \mathrm{SPh}$. Yield 86%. Pale yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 7.70-7.78(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.60(\mathrm{~m}, 7 \mathrm{H}), 7.24-7.36$ (m, 3H), 3.85 (s, 2H).

1-3. Synthesis of 4@X (X=H, Br, SPh, OPh)

1-3-1. Preparation of 4@H

To a THF (20 ml) solution of trans-dichlorobis(triphenylphosphine)palladium(II) $\left(\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right)$ ($79.4 \mathrm{mg}, 0.112 \mathrm{mmol}$) and copper(I)iodine ($\mathrm{CuI}, 44.3 \mathrm{mg}, 0.224 \mathrm{mmol}$) stirred for 10 min under N_{2} atmosphere, trimethylamine (TEA, $0.8 \mathrm{ml}, 5.68 \mathrm{mmol}$), benzoyl chloride $(0.96 \mathrm{ml}, 6.8 \mathrm{mmol})$ and p ethynyltoluene ($0.86 \mathrm{ml}, 6.8 \mathrm{mmol}$) were added, and the solution was refluxed for 3 h . The crude product was extracted with benzene $(50 \mathrm{ml} \times 3)$. The benzene solution was washed with saturated aqueous NaHCO_{3} and brine, and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The product was purified by passing through a silica-gel column with a mixture of hexane/ethyl acetate $(9: 1, \mathrm{v} / \mathrm{v})$ as the eluent. Pale yellow solid. Yield $55 \%(0.68 \mathrm{~g}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 8.22(\mathrm{dd}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.57-7.64(\mathrm{~m}, 3 \mathrm{H})$, 7.49-7.53 (m, 2H), 7.21-7.25 (m, 2H), 2.40 (s, 3H).

1-3-2. Preparation of $\mathbf{4}$ @ $\mathbf{B r}$

Step 1. Synthsis of \boldsymbol{p}-trimethylsilylethynylbenzyl bromide (TMSEPhCH $\mathbf{C H r}_{2}$)
To $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (20 ml) of trimethylsilylethynylbenzyl alcohol $(1.6 \mathrm{~g})$ tetrabromomethane $(4.5 \mathrm{~g})$ and 2,6-lutidine (4.4 ml), $\mathrm{a} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (5 ml) of triphenylphosphine (3.9 g) was added dropwise at $0{ }^{\circ} \mathrm{C}$. The solution was stirred at room temperature for 16 h . The crude product was extracted with benzene ($50 \mathrm{ml} \times 3$). The benzene solution was washed with saturated aqueous NaHCO_{3} and brine, and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The product was purified by passing through a silica-gel column with a mixture of hexane/ethyl acetate ($9: 1, \mathrm{v} / \mathrm{v}$) as the eluent. Yellow liquid. Yield $96 \%(1.92 \mathrm{~g}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.45(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.30(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}), 4.45(\mathrm{~s}, 2 \mathrm{H}), 0.24(\mathrm{~s}, 9 \mathrm{H})$.

Step 2. Synthesis of \boldsymbol{p}-ethynylbenzyl bromide $\left(\mathbf{E P h C H}_{2} \mathbf{B r}\right)$

The methanol solution $(25 \mathrm{ml})$ of $\mathrm{TMSEPhCH} 2 \mathrm{Br}(1.0 \mathrm{~g})$ in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}(5.2 \mathrm{~g})$ was stirred at room temperature. The solution was filtrated, and evaporated. The product solved in benzene was washed with saturated aqueous NaHCO_{3} and brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was evaporated. The product was used for the next process without further purification.

Step 3. Synthesis of 4@Br

In THF (5 ml), added $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(17 \mathrm{mg}, 0.024 \mathrm{mmol})$ and $\mathrm{CuI}(9 \mathrm{mg}, 0.048 \mathrm{mmol})$, triethylamine (TEA, $0.17 \mathrm{ml}, 1.26 \mathrm{mmol}$), benzoyl chloride ($0.17 \mathrm{ml}, 1.5 \mathrm{mmol}$) and EPhCH $\mathrm{EPr}_{2} \mathrm{Br}(0.29 \mathrm{ml}, 1.5 \mathrm{mmol})$ were stirred under N_{2} atmosphere for 3 h at room temperature. Benzene (100 ml) was added. The filtrated solution was washed with saturated aqueous NaHCO_{3} and brine, and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated, and the residue was chromatographed on a silica gel column using a mixture of hexane and ethyl acetate ($9: 1, \mathrm{v} / \mathrm{v}$) as the developing solvent to obtain 4@Br $(0.38 \mathrm{~g})$. Yield 85%. Yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 8.20(\mathrm{dd}, 2 \mathrm{H}, J=8.36 \mathrm{~Hz}), 7.60-7.65(\mathrm{~m}, 3 \mathrm{H}), 7.51(\mathrm{dd}$, $2 \mathrm{H}, J=7.7 \mathrm{~Hz}), 7.42-7.44(\mathrm{~m}, 2 \mathrm{H})$.

1-3-3. Preparation of 4@OPh

Step 1. Synthesis of \boldsymbol{p}-bromobenzylphenyl ether ($\left.\mathbf{B r P h C H}_{2} \mathbf{O P h}\right)$
To acetone 50 ml , p-bromobenzylbromide ($1.28 \mathrm{~g}, 5 \mathrm{mmol}$), phenol ($1.0 \mathrm{~g}, 10 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(3.6 \mathrm{~g}$, 25 mmol) were added, and the solution was stirred for 4 h under N_{2} atmosphere at $60{ }^{\circ} \mathrm{C}$. The filtrated solution was evaporated. The residual was dissolved with benzene, and the solution was washed with brine, and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The product was purified by column chromatography on silica gel with hexane/chloroform (5:1, v/v) as the eluent. White solid. Yield $89 \%(1.18 \mathrm{~g}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 7.50(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}), 7.26-7.32(\mathrm{~m}, 4 \mathrm{H}), 6.93-6.98(\mathrm{~m}, 3 \mathrm{H}), 5.01(\mathrm{~s}, 2 \mathrm{H})$.

Step 2. Synthesis of \boldsymbol{p}-trimethylsilylethynylbenzylphenyl ether (TMSEPhCH2OPh)

In THF (17 ml), added $\mathrm{BrPhCH}_{2} \mathrm{OPh}(755 \mathrm{mg}, 2.9 \mathrm{mmol})$, $\mathrm{CuI}(55 \mathrm{mg}, 0.29 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ $(105 \mathrm{mg}, 0.15 \mathrm{mmol})$, trimethylsilylethynyl $(0.41 \mathrm{ml}, 2.9 \mathrm{mmol})$ and TEA (17.1 ml) were stirred under N_{2} atmosphere for 1 h at room temperature. Benzene (100 ml) was added. The filtrated solution was washed with saturated aqueous NaHCO_{3} and brine, and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated, and the residue was chromatographed on a silica gel column using a mixture of hexane and chloroform ($3: 1, \mathrm{v} / \mathrm{v}$) as the developing solvent to obtain TMSEPhCH $\mathrm{T}_{2} \mathrm{OPh}(761 \mathrm{mg})$. Yield 94%. Pale yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 7.50(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}$), $7.26-7.37(\mathrm{~m}, 4 \mathrm{H}), 6.94-$ $6.96(\mathrm{~m}, 3 \mathrm{H}), 5.05 \mathrm{~s}, 2 \mathrm{H}), 0.24(\mathrm{~s}, 9 \mathrm{H})$.

Step 3. Synthsis of \boldsymbol{p}-ethynylbenzylphenyl ether ($\mathbf{E P h C H} \mathbf{2} \mathbf{O P h}$)

In methanol (31 ml), added $\mathrm{TMSEPhCH}_{2} \mathrm{OPh}(761 \mathrm{mg}, 2.7 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(3.7 \mathrm{~g})$ were stirred under N_{2} atmosphere for 3.5 h at room temperature. The filtrated solution wad evaporated. benzene solution of the residue was washed with saturated aqueous NaHCO_{3} and brine, and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$,
and the solvent was evaporated. The product was used for the next process without further purification.

Step 4. Synthesis of 4@OPh

In THF (15.9 ml), added $\mathrm{EPhCH}_{2} \mathrm{OPh}(562 \mathrm{mg}, 2.7 \mathrm{mmol}), \mathrm{CuI}(53 \mathrm{mg}, 0.27 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ ($99 \mathrm{mg}, 0.14 \mathrm{mmol}$), $\mathrm{PPh}_{3}(59 \mathrm{mg}, 0.22 \mathrm{mmol})$, benzoyl chloride $(0.37 \mathrm{ml}, 3.2 \mathrm{mmol})$ and TEA (15.4 ml) were refluxed under N_{2} atmosphere for 8 h . Benzene (100 ml) was added. The filtrated solution was washed with saturated aqueous NaHCO_{3} and brine, and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated, and the residue was chromatographed on a silica gel column using a mixture of hexane and ethyl acetate ($5: 1, \mathrm{v} / \mathrm{v}$) as the developing solvent to obtain 4@OPh (383 mg). Yield 45%. Pale yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 8.22(\mathrm{dd}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 8.15(\mathrm{dd}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz})$, $7.70(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.50-7.54(\mathrm{~m}, 5 \mathrm{H}), 6.95-6.99(\mathrm{~m}, 3 \mathrm{H})$.

1-3-4. Preparation of 4@SPh

Step 1. Synthesis of \boldsymbol{p}-bromobenzylphenyl sulfide $\left(\mathbf{B r P h C H}_{2} \mathbf{S P h}\right)$

To acetone 50 ml , p-bromobenzylbromide ($1.2 \mathrm{~g}, 4.4 \mathrm{mmol}$), thiophenol ($0.9 \mathrm{ml}, 8.8 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(3.1 \mathrm{~g}, 22 \mathrm{mmol})$ were added, and the solution was stirred for 8 h under N_{2} atmosphere at $60{ }^{\circ} \mathrm{C}$. The filtrated solution was evaporated. The residue was dissolved with benzene, and the solution was washed with brine, and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The product was purified by column chromatography on silica gel with hexane/chloroform ($3: 1, \mathrm{v} / \mathrm{v}$) as the eluent to obtain $\mathrm{BrPhCH}_{2} \mathrm{SPh}(1.11 \mathrm{~g})$. Yield 86%. White solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 7.38(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}), 7.22-7.29(\mathrm{~m}, 5 \mathrm{H}), 6.90(\mathrm{~d}, 2 \mathrm{H}$, $J=8.2 \mathrm{~Hz}), 4.02(\mathrm{~s}, 2 \mathrm{H})$.

Step 2.Synthesis of \boldsymbol{p}-rimethylsilylethynylbenzylphenyl sulfide ($\mathbf{T M S E P h C H}_{\mathbf{2}} \mathbf{S P h}$)

In THF (21 ml), added $\mathrm{BrPhCH}_{2} \mathrm{SPh}(1.38 \mathrm{~g}, 4.9 \mathrm{mmol}), \mathrm{CuI}(94 \mathrm{mg}, 0.49 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(175$ $\mathrm{mg}, 0.25 \mathrm{mmol}$), triphenylphospin ($103 \mathrm{mg}, 0.39 \mathrm{mmol}$), trimethylsilylethynyl ($0.83 \mathrm{ml}, 5.9 \mathrm{mmol}$) and TEA (31 ml) were stirred under N_{2} atmosphere for 5 h at $70{ }^{\circ} \mathrm{C}$. Benzene (100 ml) was added. The filtrated solution was washed with saturated aqueous NaHCO_{3} and brine, and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated, and the residue was chromatographed on a silica gel column using a mixture of hexane and chloroform ($5: 1, \mathrm{v} / \mathrm{v}$) as the developing solvent to obtain $\mathrm{TMSEPhCH}_{2} \mathrm{SPh}$ (774 mg). Yield 53%). Pale yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 7.40(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}$), 7.23-7.31 (m, 4H), 7.18-7.21 (m, 3H), 4.07 (s, 2H), $0.29(\mathrm{~s}, 9 \mathrm{H})$.

Step 3. Synthesis of \boldsymbol{p}-ethynylbenzylphenyl sulfide ($\mathbf{E P h C H}_{2} \mathbf{S P h}$)

In methanol (20 ml), added $\mathrm{TMSEPhCH}_{2} \mathrm{SPh}(772 \mathrm{mg}, 2.6 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(3.7 \mathrm{~g})$ were stirred under N_{2} atmosphere for 3.5 h at room temperature. The filtrated solution wad evaporated. benzene solution of the residue was washed with saturated aqueous NaHCO_{3} and brine, and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was evaporated. The product was used for the next process without further purification.

Step 4. Synthesis of 4@SPh

In THF (15 ml), added $\mathrm{EPhCH}_{2} \mathrm{SPh}(628 \mathrm{mg}, 2.8 \mathrm{mmol}), \mathrm{CuI}(53 \mathrm{mg}, 0.27 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(99$ $\mathrm{mg}, 0.14 \mathrm{mmol}), \mathrm{PPh}_{3}(60 \mathrm{mg}, 0.22 \mathrm{mmol})$, benzoyl chloride ($0.65 \mathrm{ml}, 5,6 \mathrm{mmol}$) and TEA (20 ml) were refluxed under N_{2} atmosphere for 8 h . Benzene (100 ml) was added. The filtrated solution was washed with saturated aqueous NaHCO_{3} and brine, and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated, and the residue was chromatographed on a silica gel column using a mixture of hexane and ethyl acetate ($7: 1, \mathrm{v} / \mathrm{v}$) as the developing solvent to obtain $\mathbf{4} @ \mathrm{SPh}(767 \mathrm{mg})$. Yield 83%. Pale yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 8.20(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 8.15(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.57-$ $7.69(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.30(\mathrm{~m}, 3 \mathrm{H}), 4.10(\mathrm{~s}, 2 \mathrm{H})$.

1-4. Synthesis of benzoylphenyl acethylene (BPA)

Step 1. Synthesis of PhOHEPh

To triethyl amine (TEA) 25 ml , iodobenzene 0.27 ml (2.4 mmol), 1-phenyl-2-propyn-1-ol 0.3 ml (2.4 $\mathrm{mmol})$, $\mathrm{CuI} 46 \mathrm{mg}(0.24 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2} 86 \mathrm{mg}(0.12 \mathrm{mmol}), \mathrm{PPh}_{3} 55 \mathrm{mg}(0.19 \mathrm{mmol})$ were added, the solution was stirred at $50{ }^{\circ} \mathrm{C}$ for 4 h under N_{2} atmosphere. Benzene (100 ml) was added. The solution was filtrated, washed with aqueous NaHCO_{3} and brine, and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated, and the product was purified on silica gel chromatograph with hexane/ethyl acetate $(4: 1, \mathrm{v} / \mathrm{v})$ as the eluent to obtain 495 mg PhOHEPh. Yield. 99%. Pale yellow liquid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.61(\mathrm{~d}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}), 7.29-7.48(\mathrm{~m}, 7 \mathrm{H}), 5.68(\mathrm{~s}, 1 \mathrm{H}), 2.59(\mathrm{~s}, 1 \mathrm{H})$.

Step 2. Synthesis of BPA

To dichloromethane 25 ml , PhOHEPh $495 \mathrm{mg}(2.38 \mathrm{mmol})$ and $\mathrm{MnO}_{2} 1.5 \mathrm{~g}(17 \mathrm{mmol})$ were added. The solution was vigorously stirred at room temperature for 1.5 h , and filtrated. After the solvent was evaporated, the product was purified on silica gel chromatograph with hexane/ethyl acetate ($5: 1, \mathrm{v} / \mathrm{v}$) as the eluent to obtain 341 mg BPA. Yield 70%. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}$ 8.06-8.09 (m, 2H), 7.45-7.54 (m, 3H), 7.23-7.38 (m, 5H).

2. Quenching data for triplet energy transfer.

Quenching rate constants, k_{q} were obtained from the slope of the plots for the observed rates (k_{obsd}) on triplet sensitization as a function of the concentration of $\boldsymbol{n} @ X(\boldsymbol{n}=2-4),[\boldsymbol{n} @ X]$. When the plots of $k_{\text {obsd }}$ show a straight line, $k_{\text {obsd }}$ is expressed by eq S 1 .
$k_{\text {obsd }}=k_{0}+k_{\mathrm{q}}[\boldsymbol{n} @ \mathrm{X}]$
Here, k_{0} is the decay rate of the triplet sensitizer.

2-1. Quenching data for 2@X.

Figure S 1 shows rates (k_{obs}) of the triplet formation for the $\mathrm{Ac} / \mathbf{2} @ \mathrm{OPh}$ system and the PTR formation for the Ac/2@SPh system plotted as a function of [2@X]. Since the plots show straight lines, $k_{\text {obsd }}$ is expressed with eq S1. The k_{0} value was $6.0 \times 10^{5} \mathrm{~s}^{-1}$ extrapolated for the decay rate of triplet Ac. From the slope of the line the k_{q} values were determined to be 5.7×10^{9} and $3.5 \times 10^{9} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ for the $\mathrm{Ac} / \mathbf{2} @ \mathrm{OPh}$ and $\mathrm{Ac} / \mathbf{2} @ \mathrm{SPh}$, respectively. The k_{q} values are rate constants for the triplet energy transfer from triplet Ac to 2@X.

Figure S1. Formation rates of the intermediates plotted as a function of [2@X] upon 308 nm laser pulsing in ACN solution of the $\mathrm{Ac}\left(0.6 \mathrm{~mol} \mathrm{dm}^{-3}\right) / \mathbf{2} @ \mathrm{X}$ systems.

2-2. Quenching data for 3@X.

Figure S 2 shows decay rates (k_{obsd}) of triplet XT for the $\mathrm{XT} / \mathbf{3} @ \mathrm{X}$ system plotted as a function of [$3 @ \mathrm{X}]$. Since the plots show straight lines, $k_{\text {obsd }}$ is expressed with eq S 1 . The k_{0} value was $3.2 \times 10^{6} \mathrm{~s}^{-}$ ${ }^{1}$ for the decay rate of triplet XT. From the slope of the line, the k_{q} values were determined to be 1.5×10^{10} and $1.2 \times 10^{10} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ for the XT/3@ OPh and $\mathrm{XT} / \mathbf{3} @ \mathrm{SPh}$, respectively. The k_{q} values
are rate constants for the triplet energy transfer from triplet XT to $\mathbf{3} @ \mathrm{X}$.

Figure S2. Decay rates of triplet XT plotted as a function of [3@X] upon 355 nm laser pulsing in ACN solution of the $\mathrm{XT}\left(9.0 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}\right) / \mathbf{3} @ \mathrm{X}$ systems.

2-3. Quenching data for $4 @ X$.

Figure S3 shows decay rates (k_{obsd}) of triplet XT for the XT/4@X system plotted as a function of [4@X]. Since the plots show straight lines, $k_{\text {obsd }}$ is expressed with eq S1. The k_{0} value was $3.2 \times 10^{6} \mathrm{~s}^{-}$ ${ }^{1}$ for the decay rate of triplet XT. From the slope of the line, the k_{q} values were determined tas listed in Table S1. The k_{q} values are rate constants for the triplet energy transfer from triplet XT to $\mathbf{4} @ \mathrm{X}$.

Table S1. Quenching rate constant $\left(k_{\mathrm{q}}\right)$ of $\mathbf{4}$ @ X by XT in ACN.

X	$k_{\mathrm{q}} / 10^{10} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$
H	1.2
OPh	1.4
Br	1.3
SPh	1.3

Figure S3. Decay rates of triplet XT plotted as a function of [4@X] upon 355 nm laser pulsing in ACN solution of XT $\left(9.0 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}\right) / \mathbf{4} @ \mathrm{H}(\mathrm{a}), / 4 @ \mathrm{OPh}(\mathrm{b}), / 4 @ \mathrm{Br}$ (c) and /4@SPh (d) systems.

3. Results of DFT calculation

The calculation was carried out at the DFT level, using the Gaussian 09 software package. ${ }^{2}$ The geometries of $\boldsymbol{n} @$ SPh and $\boldsymbol{n} @ \mathrm{R}$ were fully optimized by using the $6-31 \mathrm{G}(\mathrm{d})$ base set at the (U)B3LYP method. The calculated $\Delta_{\mathrm{f}} H$ values for $\boldsymbol{n} @ \mathrm{SPh}$ and $\boldsymbol{n} @ \mathrm{R}$ are, respectively, listed in Tables S 2 and 3.

Table S2. Calculated heats of formation for $\boldsymbol{n} @$ SPh.

Compound	$\Delta_{\mathrm{f}} H(\boldsymbol{n} @ \mathrm{SPh}) /$ hartree $^{\mathrm{a}}$
$\mathbf{1} @ \mathrm{SPh}$	-1244.872295
$\mathbf{2} @ \mathrm{SPh}$	-1090.03458
$\mathbf{3} @ \mathrm{SPh}$	-1321.011247
$\mathbf{4} @ \mathrm{SPh}$	-1321.013713

a) 1 Hartree $=627.5095 \mathrm{kcal} \mathrm{mol}^{-1}$.

Table S3. Calculated heats of formation for the radicals $\left(\Lambda_{\mathrm{f}} H(\mathrm{Rad})\right)$.

Radical	$\Delta_{\mathrm{f}} H(\mathrm{Rad}) /$ hartree $^{\mathrm{a}}$
1@R	-615.089064
2@R	-460.256824
3@R	-691.235753
4@R	-691.232522
PTR	-629.706786

a) 1 Hartree $=627.5095 \mathrm{kcal} \mathrm{mol}^{-1}$.

Atom coordinates for the optimized geometries of $\boldsymbol{n} @ \mathrm{SPh}, \boldsymbol{n} @ \mathrm{R}$ and PTR in acetonitrile are as follows.

Table S4. Atom coordinates for the optimized geometry of $1 @$ SPh

	X	Y	Z
C	-5.70589	1.46745	0.49706
C	-5.75509	1.66819	-0.88684
C	-4.81840	1.04722	-1.71564

C
C
C
C
0
C
C
C
C
C
C
C
S
C
C
C
C
C
C
H
H
H
H
H
H
H
H

H
H
H
H
H

H
H
H
Sum of electronic and zero-point energies $=-1244.891787$ Hartree

Table S5. Atom coordinates for the optimized geometry of $\mathbf{2} @$ SPh

	X	Y	Z
C	5.10626	-1.25027	0.21200
C	4.59443	-1.97517	-0.87083
C	3.34062	-1.65730	-1.39951
C	2.59615	-0.61543	-0.84820
C	3.10423	0.11472	0.23743
	12		

C

C
0
C
C
C
S
C
C
C
C
C
C
H
H
H
H
H
H
H
H
H
H
H
H

4.36564	-0.21024	0.76426
2.34251	1.23390	0.85484
2.77816	1.88599	1.80321
1.03648	1.55347	0.30127
-0.05901	1.87198	-0.11347
-1.36557	2.24961	-0.62929
-2.22862	0.93969	-1.61303
-3.04865	-0.04821	-0.36063
-2.55263	-0.22528	0.93783
-3.24516	-1.03493	1.84150
-4.41541	-1.69109	1.45582
-4.89997	-1.52568	0.15584
-4.22891	-0.70115	-0.74743
6.08105	-1.49932	0.62116
5.17396	-2.78707	-1.30120
2.94422	-2.21985	-2.23957
1.62202	-0.36535	-1.25712
4.74531	0.36287	1.60363
-1.25919	3.09057	-1.32347
-2.03138	2.57581	0.17604
-1.62972	0.25260	1.24929
-2.85619	-1.15888	2.84848
-4.94550	-2.32442	2.16117
-5.81274	-2.02623	-0.15529
-4.62529	-0.55735	-1.74880

Sum of electronic and zero-point energies $=-1090.051569$ Hartree

Table S6. Atom coordinates for the optimized geometry of $\mathbf{3} @$ SPh

	X	Y	Z
C	-7.48196	0.34358	-1.02814
C	-7.62897	-0.95135	-0.51876
C	-6.58274	-1.54588	0.18977
C	-5.38307	-0.85748	0.37621
C	-5.22587	0.44154	-0.13437
C	-6.29377	1.03936	-0.82555
C	-3.99327	1.25882	0.09607
O	-4.07344	2.48579	0.15458
C	-2.65781	0.59919	0.25566
C	-2.32431	-0.61232	-0.37192

C

C
C
C

C

C
C
S
C
C

C
C
C

C

H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H

-1.04545	-1.14605	-0.24775
-0.06788	-0.48551	0.52123
-0.40189	0.73455	1.14694
-1.67363	1.27003	1.00223
1.24045	-1.03963	0.66184
2.35136	-1.51333	0.78555
3.68188	-2.08601	0.92313
4.77816	-1.88482	-0.56092
5.45799	-0.23754	-0.36523
4.80594	0.79907	0.31609
5.40367	2.05927	0.39974
6.63591	2.30447	-0.20858
7.27789	1.27348	-0.89959
6.70022	0.00598	-0.97179
-8.29559	0.80843	-1.57762
-8.55861	-1.49266	-0.67082
-6.69964	-2.54500	0.59942
-4.58121	-1.32115	0.94129
-6.17160	2.04962	-1.20277
-3.05681	-1.13017	-0.98164
-0.79329	-2.07631	-0.74639
0.34610	1.25167	1.73943
-1.92664	2.21526	1.47101
3.62130	-3.17089	1.06058
4.20858	-1.67442	1.78995
3.83462	0.63688	0.77129
4.89249	2.85381	0.93665
7.09225	3.28802	-0.14474
8.23996	1.44890	-1.37324
7.21704	-0.79661	-1.49097

Sum of electronic and zero-point energies $=-1321.032847$ Hartree

Table S7. Atom coordinates for the optimized geometry of $4 @$ SPh

	X	Y	Z
C	8.26619	0.76104	-0.26176
C	7.79119	2.06156	-0.05554
C	6.42335	2.28990	0.11641
C	5.52872	1.22110	0.08247
C	5.99893	-0.08508	-0.12344

C	7.37532	-0.30721	-0.29548
C	5.07852	-1.25636	-0.16605
O	5.48700	-2.40642	-0.34215
C	3.66287	-1.01142	0.00690
C	2.46098	-0.87097	0.14461
C	1.05693	-0.70216	0.30429
C	0.19468	-1.81676	0.26077
C	-1.17581	-1.64641	0.41910
C	-1.72390	-0.37132	0.62834
C	-0.86318	0.73671	0.66757
C	0.50904	0.58039	0.51077
C	-3.20980	-0.19195	0.78178
S	-3.97594	0.08525	-0.89806
C	-5.70912	0.26790	-0.45420
C	-6.51196	-0.86435	-0.25409
C	-7.86234	-0.71579	0.06716
C	-8.42057	0.56047	0.17955
C	-7.62510	1.68999	-0.02693
C	-6.27160	1.54677	-0.34052
H	9.32967	0.58511	-0.39536
H	8.48763	2.89499	-0.02908
H	6.05466	3.29883	0.27648
H	4.46549	1.39585	0.21538
H	7.72460	-1.32206	-0.45400
H	0.60967	-2.80735	0.10509
H	-1.83054	-2.51297	0.38571
H	-1.27420	1.72966	0.82822
H	-3.67662	1.44294	0.54847
H	-6.07936	-1.67629	1.40271
H	-8.47890	-1.85560	-0.353373
H	-9.47295	0.67380	0.22282
H	-5.65069	2.68385	0.05757
H	2.42336	-0.49903	
S	$-p 0340$		

Sum of electronic and zero-point energies $=-1321.035550$ Hartree

Table S8. Atom coordinates for the optimized geometry of $1 @ R$

X	Y	Z

C
C

C

C
C
C
C
0
C
C

C
C
C

C
C
H
H
H
H
H
H
H
H
H
H
H

-3.99636	0.75852	1.61951
-4.00095	-0.44478	2.31667
-2.79820	-1.06760	2.63604
-1.59248	-0.49617	2.24683
-1.58566	0.70824	1.54098
-2.79234	1.33918	1.23533
-0.29326	1.33813	1.13541
-0.10207	2.53176	1.28669
0.74344	0.45547	0.52564
0.36933	-0.66114	-0.23186
1.33684	-1.46070	-0.82953
2.69733	-1.15429	-0.67381
3.07301	-0.04890	0.10455
2.10129	0.75944	0.68511
3.69966	-2.01404	-1.24065
-4.94198	1.25294	1.37372
-4.95006	-0.89955	2.61897
-2.80053	-2.01051	3.19265
-0.64373	-0.98788	2.49207
-2.78881	2.29458	0.69759
-0.69381	-0.90426	-0.34999
1.03991	-2.32939	-1.42683
4.13481	0.18120	0.24369
2.39782	1.63980	1.26811
4.41574	-2.52483	-0.60869
3.76047	-2.16986	-2.31062

Sum of electronic and zero-point energies $=-615.102042$ Hartree

Table S9. Atom coordinates for the optimized geometry of $\mathbf{2} @ R$

	X	Y	Z
C	-2.96721	0.45330	0.00082
C	-3.04654	-0.94418	0.00020
C	-1.87936	-1.71264	-0.00058
C	-0.63312	-1.08755	-0.00072
C	-0.54718	0.31336	-0.00014
C	-1.72448	1.07952	0.00063
C	0.76383	1.02258	-0.00040
O	0.84410	2.25777	-0.00070
C	1.96338	0.22829	-0.00027

C

3.03610	-0.38840	0.00022
4.21083	-1.07289	0.00075
-3.87502	1.04972	0.00147
-4.01726	-1.43204	0.00031
-1.94020	-2.79699	-0.00107
0.27478	-1.68293	-0.00127
-1.64361	2.16145	0.00108
4.22759	-2.15908	0.00144
5.16338	-0.55058	0.00052

Sum of electronic and zero-point energies $=-460.267725$ Hartree

Table S10. Atom coordinates for the optimized geometry of $\mathbf{3} @ R$

	X	Y	Z
C	-4.78189	-0.25497	-0.55085
C	-4.68853	-1.49048	0.09932
C	-3.49341	-1.86556	0.71664
C	-2.38522	-1.01825	0.67067
C	-2.46881	0.22195	0.01663
C	-3.68401	0.60013	-0.57973
C	-1.34036	1.20599	-0.00255
O	-1.58357	2.41374	-0.02842
C	0.07979	0.73966	0.00500
C	0.48507	-0.49649	-0.53300
C	1.82597	-0.85179	-0.56425
C	2.81517	0.01922	-0.04207
C	2.40182	1.26858	0.49315
C	1.06350	1.61883	0.50025
C	4.17254	-0.34223	-0.05753
C	5.37168	-0.65986	-0.06916
C	6.68207	-1.00788	-0.08194
H	-5.71146	0.03997	-1.02929
H	-5.54700	-2.15571	0.12789
H	-3.42271	-2.81675	1.23621
H	-1.46626	-1.31097	1.16785
H	-3.74765	1.56732	-1.06797
H	-0.25057	-1.17354	-0.95342
H	2.12918	-1.80147	-0.99278
H	3.14964	1.94581	0.89308
H	0.75084	2.57916	0.89666

H	7.00768	-1.95991	-0.49184
H	7.44446	-0.34486	0.31752

Sum of electronic and zero-point energies $=-691.251111$ Hartree

Table S11. Atom coordinates for the optimized geometry of 4@R

	X	Y	Z
C	-5.26210	-0.22672	0.00050
C	-4.95023	-1.59126	0.00021
C	-3.61552	-2.00508	-0.00024
C	-2.59199	-1.05833	-0.00039
C	-2.89811	0.31129	-0.00009
C	-4.24201	0.71985	0.00034
C	-1.83617	1.35840	-0.00027
O	-2.10595	2.56383	-0.00067
C	-0.46024	0.92497	0.00008
C	0.72317	0.62272	0.00009
C	2.09027	0.26906	0.00016
C	3.09609	1.27323	0.00029
C	4.42959	0.93017	0.00025
C	4.84599	-0.44114	0.00002
C	3.81860	-1.44044	-0.00014
C	2.48543	-1.09614	-0.00005
C	6.19825	-0.78870	-0.00002
H	-6.29995	0.09398	0.00087
H	-5.74720	-2.32965	0.00037
H	-3.37276	-3.06372	-0.00046
H	-1.55439	-1.37806	-0.00075
H	-4.46397	1.78192	0.00055
H	2.79843	2.31714	0.00049
H	5.18905	1.70704	0.00036
H	4.10752	-2.48779	-0.00030
H	1.72054	-1.86645	-0.00016
H	6.97281	-0.02863	0.00010
H	6.51140	-1.82773	-0.00021
Sun		0.691 .24712 Ha	

Sum of electronic and zero-point energies $=-691.247712$ Hartree

Table S12. Atom coordinates for the optimized geometry of PTR.

	X	Y	Z
S	2.32862	0.00000	0.00002

C	0.55325	0.00000	-0.00020
C	-0.14999	1.21567	0.00002
C	-1.54576	1.20576	0.00006
C	-2.25029	0.00000	-0.00008
C	-1.54576	-1.20576	0.00006
C	-0.14999	-1.21567	0.00002
H	0.38558	2.16035	0.00013
H	-2.08090	2.15145	0.00011
H	-3.33615	0.00000	-0.00009
H	-2.08090	-2.15145	0.00010
H	0.38558	-2.16035	0.00013

Sum of electronic and zero-point energies $=-629.706786$ Hartree

