Ethylperoxy radical: approaching spectroscopic accuracy via coupled-cluster theory

- Supplementary material -

Andrew M. Launder Justin M. Turney Jay Agarwal Henry F. Schaefer III

Center for Computational Quantum Chemistry, University of Georgia, Athens, GA, USA 30602

Contents

1	${\rm \tilde{X}}~^{2}{\rm A}^{\prime\prime}$ trans-ethylperoxy radical - $trans{\rm -C_{2}H_{5}O_{2}}$	$\mathbf{S3}$
2	$\tilde{\rm X}$ ^2A gauche-ethylperoxy radical - gauche-C_2H_5O_2	$\mathbf{S4}$
3	${\rm \tilde{A}}~^2{\rm A'}$ trans-ethylperoxy radical - $trans{\rm -C_2H_5O_2}$	$\mathbf{S5}$
4	${\rm \tilde{A}}$ ^2A gauche-ethylperoxy radical - gauche-C_2H_5O_2	$\mathbf{S6}$
5	${\rm \tilde{X}}~^2 A^{\prime\prime}$ methylperoxy radical - $\rm CH_3O_2$	$\mathbf{S7}$
6	${\rm \tilde{A}}~^2{\rm A'}$ methylperoxy radical - ${\rm CH_3O_2}$	$\mathbf{S8}$
7	${\rm \tilde{X}}~^2A^{\prime\prime}$ hydroperoxy radical - ${\rm HO}_2$	$\mathbf{S9}$
8	${\rm \tilde{A}}~^2{\rm A'}$ hydroperoxy radical - ${\rm HO}_2$	S10
9	${\rm \tilde{X}}~^2{\rm A}_2^{\prime\prime}$ methyl radical - ${\rm CH}_3$	$\mathbf{S11}$
10	Incremented focal point tables for RO ₂ $\tilde{A} \leftarrow \tilde{X} T_0$ values (R = CH ₃ , H)	S12
11	Harmonic vibrational frequency assignments for $\tilde{A} {}^{2}A'$ trans- and $\tilde{A} {}^{2}A$ gauche-C ₂ H ₅ O ₂	S 13
12	Fermi type 2 resonance calculations for \tilde{X} ² A ^{$\prime\prime$} trans-C ₂ H ₅ O ₂	$\mathbf{S14}$

1 $\tilde{X}^{2}A''$ trans-ethylperoxy radical - trans-C₂H₅O₂

Program: MOLPRO 2010.1 Theory: CCSD(T)/ANO2 Charge/Multiplicity: 0/2Reference: ROHF Frozen core: True Point group: C_s SCF energy convergence: 10^{-11} CC energy convergence: 10^{-11} CC amplitudes convergence: 10^{-10} Geometry convergence: 10^{-7} Integral threshold: 10^{-14}

CCSD/ANO2 max. $|t_{ij}^{ab}|$: 0.02

 $CASSCF(13, 13) / ANO2 C_0: 0.959$

Equilibrium geometry (Å):

С	-0.5188089230	0.5519246235	0.000000000
0	0.5195698892	-0.4634981016	0.000000000
0	1.7128897373	0.0970022242	0.000000000
Η	-0.3719869679	1.1634044573	-0.8895952302
Η	-0.3719869679	1.1634044573	0.8895952302
С	-1.8448044293	-0.1715485927	0.000000000
Η	-1.9440500120	-0.7983462147	-0.8857571760
Η	-1.9440500120	-0.7983462147	0.8857571760
Н	-2.6555411064	0.5573668140	0.000000000

$a' \mod s$	a'' modes
3136	3148
3076	3126
3053	1494
1517	1283
1506	1162
1424	806
1383	231
1185	89
1148	
1046	
866	
507	
309	

2 $\tilde{X}^{2}A$ gauche-ethylperoxy radical - gauche-C₂H₅O₂

Program: MOLPRO 2010.1 Theory: CCSD(T)/ANO2 Charge/Multiplicity: 0/2Reference: ROHF Frozen core: True Point group: C_1 SCF energy convergence: 10^{-11} CC energy convergence: 10^{-11} CC amplitudes convergence: 10^{-10} Geometry convergence: 10^{-7} Integral threshold: 10^{-14}

CCSD/ANO2 max. $|t_{ij}^{ab}|$: 0.02

 $CASSCF(13, 13) / ANO2 C_0: 0.961$

Equilibrium geometry (Å):

С	-1.5324940327	0.5216233876	0.1228005797
С	-0.6143783090	-0.5976590595	-0.3137263631
Н	-1.6851097546	0.4962878490	1.2016466808
Н	-2.5004651000	0.4144612538	-0.3686383853
Н	-1.1045663144	1.4842005737	-0.1536382651
0	0.6771826255	-0.4875361609	0.3412337902
Н	-0.4308936246	-0.5895727155	-1.3872607330
Н	-0.9777114159	-1.5774385541	-0.0053476245
0	1.3555617142	0.5302222814	-0.1530519220

$a \mod s$	$a \mod (\text{cont.})$
3153	1205
3135	1160
3129	1110
3079	1018
3051	866
1511	802
1494	531
1490	363
1413	234
1383	125
1312	

3 $\tilde{A}^{2}A'$ trans-ethylperoxy radical - trans-C₂H₅O₂

Program: MOLPRO 2010.1 Theory: CCSD(T)/ANO2 Charge/Multiplicity: 0/2 Reference: ROHF Frozen core: True Point group: C_s SCF energy convergence: 10^{-11} CC energy convergence: 10^{-11} CC amplitudes convergence: 10^{-10} Geometry convergence: 10^{-7} Integral threshold: 10^{-14}

CCSD/ANO2 max. $|t_{ij}^{ab}|$: 0.02

CASSCF(13, 13)/ANO2 C₀: 0.963

Equilibrium geometry (Å):

С	-0.4956885719	0.5430564253	0.0000000000
0	0.4858949109	-0.5108647141	0.0000000000
0	1.7242024334	0.1244981797	0.0000000000
Η	-0.3510151994	1.1579201425	-0.8912164899
Η	-0.3510151994	1.1579201425	0.8912164899
С	-1.8420084989	-0.1447691015	0.0000000000
Н	-1.9545447709	-0.7674520567	-0.8865786907
Н	-1.9545447709	-0.7674520567	0.8865786907
Η	-2.6301702073	0.6086421759	0.0000000000

Harmonic frequencies (cm^{-1}) :

286

a' modes a''	a'' modes	
3137 3	146	
3055 30	091	
3044 14	490	
1535 12	284	
1510 1:	192	
1420	835	
1391	236	
1135	141	
1052		
982		
866		
437		

4 $\tilde{A}^{2}A$ gauche-ethylperoxy radical - gauche-C₂H₅O₂

Program: MOLPRO 2010.1 Theory: CCSD(T)/ANO2 Charge/Multiplicity: 0/2Reference: ROHF Frozen core: True Point group: C_1 SCF energy convergence: 10^{-11} CC energy convergence: 10^{-11} CC amplitudes convergence: 10^{-10} Geometry convergence: 10^{-7} Integral threshold: 10^{-14}

CCSD/ANO2 max. $|t_{ij}^{ab}|$: 0.02

 $CASSCF(13, 13) / ANO2 C_0: 0.955$

Equilibrium geometry (Å):

0.1464604158	-0.5367025185	-1.5160893616
-0.3244778801	0.5832145568	-0.6104005954
1.2299209247	-0.5061553528	-1.6267460923
-0.3096873161	-0.4204070726	-2.5008003884
-0.1368517924	-1.5098957044	-1.1180395184
0.3164337434	0.5619703322	0.6808322459
-1.4064302258	0.5620822257	-0.4605196798
-0.0393765366	1.5620908218	-0.9933453042
-0.1411298020	-0.5771854991	1.3366659546
	0.1464604158 -0.3244778801 1.2299209247 -0.3096873161 -0.1368517924 0.3164337434 -1.4064302258 -0.0393765366 -0.1411298020	0.1464604158-0.5367025185-0.32447788010.58321455681.2299209247-0.5061553528-0.3096873161-0.4204070726-0.1368517924-1.50989570440.31643374340.5619703322-1.40643022580.5620822257-0.03937653661.5620908218-0.1411298020-0.5771854991

$a \mod (\text{cont.})$
1182
1115
1048
946
859
803
460
339
231
131

5 $\tilde{X}^{2}A''$ methylperoxy radical - $CH_{3}O_{2}$

Program: MOLPRO 2010.1 Theory: CCSD(T)/ANO2 Charge/Multiplicity: 0/2Reference: ROHF Frozen core: True Point group: C_s SCF energy convergence: 10^{-11} CC energy convergence: 10^{-11} CC amplitudes convergence: 10^{-10} Geometry convergence: 10^{-7} Integral threshold: 10^{-14}

CCSD/ANO2 max. $|t_{ij}^{ab}|$: 0.03

CASSCF(19, 15)/ANO2 C₀: 0.957

Equilibrium geometry (Å):

0	-0.0534713074	0.5312873379	0.000000000
0	-1.0962381809	-0.2767259455	0.000000000
С	1.1661274192	-0.2372916157	0.000000000
Η	1.9715584512	0.4930692692	0.000000000
Η	1.1951430248	-0.8538763414	-0.8954041101
Н	1.1951430248	-0.8538763414	0.8954041101

$a' \mod s$	a'' modes	
3175	3165	
3064	1484	
1497	1146	
1450	155	
1218		
1166		
948		
495		

6 $\tilde{A}^{2}A'$ methylperoxy radical - $CH_{3}O_{2}$

Program: MOLPRO 2010.1 Theory: CCSD(T)/ANO2 Charge/Multiplicity: 0/2 Reference: ROHF Frozen core: True Point group: C_s SCF energy convergence: 10^{-11} CC energy convergence: 10^{-11} CC amplitudes convergence: 10^{-10} Geometry convergence: 10^{-7} Integral threshold: 10^{-14}

CCSD/ANO2 max. $|t_{ij}^{ab}|$: 0.03

 $CASSCF(19, 15) / ANO2 C_0: 0.959$

Equilibrium geometry (Å):

0	-0.0149524153	0.5777485552	0.000000000
0	-1.1072340140	-0.2873804332	0.000000000
С	1.1363598135	-0.2721046276	0.000000000
Η	1.9770314586	0.4166263109	0.000000000
Η	1.1512199521	-0.8925379689	-0.8967962411
Н	1.1512199521	-0.8925379689	0.8967962411

$a' \mod s$	a'' modes
3168	3122
3041	1478
1519	1177
1455	251
1185	
1037	
913	
385	

7 $~~{\rm \tilde{X}}~^2 A''$ hydroperoxy radical - ${\rm HO}_2$

Program: MOLPRO 2010.1 Theory: CCSD(T)/ANO2 Charge/Multiplicity: 0/2Reference: ROHF Frozen core: True Point group: C_s SCF energy convergence: 10^{-11} CC energy convergence: 10^{-11} CC amplitudes convergence: 10^{-10} Geometry convergence: 10^{-7} Integral threshold: 10^{-14}

 $CASSCF(13, 9) / ANO2 C_0: 0.974$

CCSD/ANO2 max. $|t_{ij}^{ab}|$: 0.04

Equilibrium geometry (Å):

 0
 -0.6937342972
 0.0081785728
 0.000000000

 0
 0.6354757377
 -0.0626608366
 0.000000000

 H
 0.9246056151
 0.8646730647
 0.0000000000

Harmonic frequencies (cm^{-1}) :

 $a' \mod s$

3666 1439 1140

8 $\tilde{A}^{2}A'$ hydroperoxy radical - HO₂

Program: MOLPRO 2010.1 Theory: CCSD(T)/ANO2 Charge/Multiplicity: 0/2 Reference: ROHF Frozen core: True Point group: C_s SCF energy convergence: 10^{-11} CC energy convergence: 10^{-11} CC amplitudes convergence: 10^{-10} Geometry convergence: 10^{-7} Integral threshold: 10^{-14}

 $CASSCF(13, 9) / ANO2 C_0: 0.975$

CCSD/ANO2 max. $|t_{ij}^{ab}|$: 0.05

Equilibrium geometry (Å):

D-0.72747726230.00539633020.000000000D0.6699666871-0.06069123310.000000000H0.91273456180.87757023710.0000000000

Harmonic frequencies (cm^{-1}) :

 $a' \mod s$

3748 1231 957

9 $\tilde{X}^{2}A_{2}''$ methyl radical - CH_{3}

Program: MOLPRO 2010.1 Theory: CCSD(T)/ANO2 Charge/Multiplicity: 0/2Reference: ROHF Frozen core: True Point group: D_{3h} SCF energy convergence: 10^{-11} CC energy convergence: 10^{-11} CC amplitudes convergence: 10^{-10} Geometry convergence: 10^{-7} Integral threshold: 10^{-14}

 $CASSCF(12, 12) / ANO2 C_0: 0.983$

CCSD/ANO2 max. $|t_{ij}^{ab}|$: 0.04 Equilibrium geometry (Å):

C0.0000000000.0000000000.0000005123H0.0000000000.000000000-1.0779420065H0.000000000-0.93352534070.5389679533H-0.0000000000.93352534070.5389679533

a'_1 modes	$a_2^{\prime\prime}$ modes	$e \mod s$
3120	507	3306
		1421

10 Incremented focal point tables for $\text{RO}_2 \ \tilde{A} \leftarrow \tilde{X} \ T_0$ values $(R = CH_3, H)$

TABLE S-I. Incremented focal point table for $\tilde{A} \leftarrow \tilde{X}$ transition origins (T_0) for the CH₃O₂ and HO₂ systems. See Sec. II of the main paper for nuances of the different theoretical methods, extrapolation schemes, and corrections. All unlabeled values are in cm⁻¹.

A. $\tilde{A} {}^{2}A' CH_{3}O_{2}$ relative to $\tilde{X} {}^{2}A'' CH_{3}O_{2}$.							
Basis set	$\Delta E_{\rm e}[{\rm ROHF}]$	$+\delta[\text{RMP2}]$	$+\delta$ [CCSD]	$+\delta[\text{CCSD}(T)]$	$+\delta$ [CCSDT]	$+\delta[CCSDT(Q)/B]$	$\Delta E_{\rm e}[{\rm CCSDT}({\rm Q})/{\rm B}]$
ANO0 ^a	+4251	+2279	+70	+203	+19	+28	[+6850]
cc- $pVTZ$	+4483	+2289	+173	+280	[+19]	[+28]	[+7273]
cc- $pVQZ$	+4522	+2338	+201	+304	[+19]	[+28]	[+7411]
cc-pV5Z	+4522	+2350	+212	+315	[+19]	[+28]	[+7445]
CBS limit	[+4518]	[+2362]	[+223]	[+326]	[+19]	[+28]	[+7476]
		$T_0 = \Delta$	$E_{\rm e} + \Delta_{\rm ZPVE}$	$+\Delta_{\rm core} + \Delta_{\rm rel}$			
$= 7476 - 115 + 22 - 7 = 7376 \text{ cm}^{-1} (21.09 \text{ kcal mol}^{-1})$							
B. $\tilde{A}^{2}A' HO_{2}$ relative to $\tilde{X}^{2}A'' HO_{2}$.							
ANO0 ^a	+4508	+1908	-40	+165	+16	+19	[+6577]
cc- $pVTZ$	+4762	+1949	+41	+231	[+16]	[+19]	[+7018]
cc- $pVQZ$	+4796	+1989	+63	+249	[+16]	[+19]	[+7132]
cc-pV5Z	+4795	+1993	+70	+257	[+16]	[+19]	[+7149]
CBS limit	[+4789]	[+1996]	[+77]	[+265]	[+16]	[+19]	[+7162]
$T_0 = 7162 - 155 + 10 - 7 = 7011 \text{ cm}^{-1} (20.05 \text{ kcal mol}^{-1})$							

^aUtilized in computation of additive corrections for higher order excitations (no contribution to extrapolation scheme).

11 Harmonic vibrational frequency assignments for $\tilde{A}^{2}A'$ trans- and $\tilde{A}^{2}A$ gauche-C₂H₅O₂

Mode	Description	Symmetry ^a	$trans-C_2H_5O_2$	$gauche-C_2H_5O_2$
ω_1	CH_3 antisym. str.	a'	3137	3130
ω_2	CH_3 sym. str.	a'	3055	3050
ω_3	CH_2 sym. str.	a'	3044	3056
ω_4	CH_3/CH_2 scissor	a'	1535	1511
ω_5	CH_3/CH_2 scissor	a'	1510	1496
ω_6	CH_3 umbrella	a'	1420	1419
ω_7	CH_2 wag	a'	1391	1388
ω_8	CH_3 rock	a'	1135	1115
ω_9	CC str.	a'	1052	1048
ω_{10}	OO str.	a'	982	946
ω_{11}	CO str.	a'	866	859
ω_{12}	COO bend	a'	437	460
ω_{13}	CCO bend	a'	286	339
ω_{14}	CH_3/CH_2 antisym. str.	$a^{\prime\prime}$	3146	3149
ω_{15}	CH_3/CH_2 antisym. str.	$a^{\prime\prime}$	3091	3124
ω_{16}	CH_3 deform.	$a^{\prime\prime}$	1490	1490
ω_{17}	CH_2 twist	$a^{\prime\prime}$	1284	1314
ω_{18}	CH_2 twist	$a^{\prime\prime}$	1192	1182
ω_{19}	CH_3/CH_2 antisym. rock	$a^{\prime\prime}$	835	803
ω_{20}	CH_3 torsion	$a^{\prime\prime}$	236	231
ω_{21}	CCOO torsion	$a^{\prime\prime}$	141	131

TABLE S-II. CCSD(T)/ANO2 predictions for harmonic vibrational frequencies (ω) of $\tilde{A}^{2}A'$ trans- and $\tilde{A}^{2}A$ gauche-C₂H₅O₂. All values are in cm⁻¹.

^aIn the case of *gauche*- $C_2H_5O_2$, the symmetry labels correlate with the symmetry of the analogous mode in *trans*- $C_2H_5O_2$. As the *gauche* conformer possesses C_1 symmetry, its normal modes are rigorously of *a* symmetry.

12 Fermi type 2 resonance calculations for $\tilde{X}^2 A''$ trans- $C_2H_5O_2$

Below, we report the first-order coupling matrices, along with their corresponding eigenvalues and eigenvectors, for the fundamentals perturbed by Fermi type 2 resonances. The eigenvalues give first-order approximations to the band origins of the Fermi dyad, while the eigenvectors form a basis that allows first-order approximation of the contributions of the resonant fundamental and combination band to each peak. The latter not only qualitatively characterizes each observed peak, but may be used to estimate the intensity borrowing in each band due to the Fermi interaction.

• Fermi type 2 resonance due to $\omega_{19} + \omega_{20} \approx \omega_{10}$.

First-order coupling matrix (all values in cm^{-1}):

$$\begin{pmatrix} \tilde{\nu}_{19} + \tilde{\nu}_{20} + \tilde{X}_{19,20} & \frac{\phi_{10,19,20}}{\sqrt{8}} \\ \frac{\phi_{10,19,20}}{\sqrt{8}} & \tilde{\nu}_{10} \end{pmatrix} = \begin{pmatrix} 1033.26 & 8.21 \\ 8.21 & 1016.30 \end{pmatrix}$$

Eigenvalues of first-order coupling matrix:

$$= 1012.98 \text{ cm}^{-1}$$
 $\lambda_{+} = 1036.58 \text{ cm}^{-1}$

Eigenvectors of first-order coupling matrix:

$$v_{-} = \begin{pmatrix} -0.9269\\ -0.3752 \end{pmatrix}$$
 $v_{+} = \begin{pmatrix} 0.3752\\ -0.9269 \end{pmatrix}$

• Fermi type 2 resonance due to $\omega_{10} + \omega_{20} \approx \omega_{17}$.

 λ_{-}

First-order coupling matrix (all values in cm^{-1}):

$$\begin{pmatrix} \tilde{\nu}_{10} + \tilde{\nu}_{20} + \tilde{X}_{10,20} & \frac{\phi_{10,17,20}}{\sqrt{8}} \\ \frac{\phi_{10,17,20}}{\sqrt{8}} & \tilde{\nu}_{17} \end{pmatrix} = \begin{pmatrix} 1242.14 & -7.93 \\ -7.93 & 1245.10 \end{pmatrix}$$

Eigenvalues of first-order coupling matrix:

$$\lambda_{-} = 1235.55 \text{ cm}^{-1}$$
 $\lambda_{+} = 1251.69 \text{ cm}^{-1}$

Eigenvectors of first-order coupling matrix:

$$v_{-} = \begin{pmatrix} -0.6390\\ 0.7692 \end{pmatrix}$$
 $v_{+} = \begin{pmatrix} -0.7692\\ -0.6390 \end{pmatrix}$