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Cyclic Voltammetry Modeling of Proton Transport Effects on
Redox Charge Storage in Conductive Material. Application to a
T10, Mesoporous Film.

Yee Seul Kim, Véronique Balland, Benoit Limoges and Cyrille Costentin*

1. Experimental Details
I-um thick amorphous TiO, films were prepared on a conductive planar ITO substrate by glancing angle
deposition (GLAD) with a deposition angle of 72° as described elsewhere.3! These films are characterized
by a surface area enhancement of 540 um-' (determined by BET analysis), a volumic density of 2.3 g cm™,
and a porosity of ~40%. For electrochemistry, a geometric electrode area S of 0.3 cm? was delimited by
nail varnish. Mesoporous GLAD TiO, electrodes were characterized by cyclic voltammetry in a three-
electrode cell using an Autolab PGSTAT-12 potentiostat controlled by a GPES-4 software. The reference
electrode was a Ag/AgCl/0.3 M KCI electrode (DriRef from WPI) and the counter electrode a platinum
wire. Experiments were conducted at pH 7.0 in Hepes buffer solutions (concentrations ranging from 0 to
860 mM) containing 0.3 M KCI. The cell was flushed with argon during the entire experiment and

thermostated to 25°C. A ohmic drop compensation of 50 Q was used during the measurement.
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2. Derivation of cyclic voltammogram equation

Glossary of symbols

Latin lower case

d,-film thickness

d,: distance between adjacent redox centers in the film
i : current

j=C;/Cin

kiydex - Tate constants

kg : standard rate constant

l=d,/\|DgRT | Fv

s: Laplace variable

t: time

t;: time where the scan is inverted

u;, uy: dimensionless initial and inversion potentials
v: scan rate

x: distance to the (planar) electrode surface

y=x/,/DRT / Fv :dimensionless distance to electrode surface
Capital Latin

CsugscripT : Volume concentration of the subscript species
Csupscript : bulk solution volume concentration of the subscript
species

CgUBSCRlPT : bulk material volume concentration of the subscript
species

Dgupscripr -diffusion coefficient of the subscript species

E : potential of the electrode

E: initial potential

E I potential at scan inversion

E° standard potential

F: Faraday constant

K, : proton transfer equilibrium constant
1,, : dimensionless convolution integral

J,, - dimensionless integral

L": inverse Laplace transform

R: gas constant

S: geometrical electrode surface area
S,: apparent electrode surface area
T: absolute temperature

Greek lower case
« transfer coefficient

z. dimensionless time: 7 =¢/(Fv/RT) ;
S S, [P
S Dext

CAn
A, =k,Ciy / (Fv/RT)
A =k_/(Fv/RT)

w=i/ (FSC/iH JDoxtFv/ RT )

£=—(F/RT)(E-E)
Capital Greek

A :ksciH /«IDHFV/RT .

Proton hopping transport in the film

As depicted in scheme S1, the formation of RH species throughout the film can occur through proton

hopping between adjacent sites together with electron localization.
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Scheme S1. Schematic representation of proton transport
dCq
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We introduce the self exchange rate constant:
kO Zk] Zk_j :k(j—l) :k—(j—l)

dc,
di

L=k [—C Co +Cry Co  +Cry Cy. —C C }zk CO[C -2CyH +C, }
O “RH;~O; "=RH; =0, = =RH; =0, "RH;,,~0; | 77070 =0, =70; 7 =0,y
Replacing finite difference expression by the corresponding differential expression :

oCqy _ Dy 3*C,

Py 2 with Dy = kOng r2 (d, isthe averaged distance between two sites).

oc o*C
Similarly, aI;H =Dy —1L
Ox

Cyclic voltammetry conditions

0<t<ti:E=Ei_Vt
L <t<2ti:E=E;+vt

Diffusion reactions equations

O<x<d,:

S3



2 2
0Co _pp 9°Co ypq OCrut _p, 9*Crus

S1
or g2 ot x> D

x<0

k, _
AHziziA +H*

OCan ’Cryy

oC o°C
A -p _ —A& | C, C, +k Cpy (S3)
ot A" ext axz A H

ac. ., o’C. .
H _p . —H _jrcC C. ., +kCyy (54)
51‘ H ,ext axz A H

C..C v
and KA:k_:A—Wzlo—PHSL
ko Can Can

Initial and boundary conditions

t=0,0<x<d,: Co=CQ and Cgyy =0

CS

t=0,x<0andx=o0, Vt: C,- =C[s¥ and Cppy = Capy and C =K4 C?H

A-
t>0,x=0:

0 (CO x=0 (CAH )x:O
aF (E —E )
Dy (58&) = ks exp| ~——— F (E —EO) (S5)
X x=0 — (CRH )x:() (CA, )x:() eXp T
oC , _
S, Dy [%j = SD, (%) = —SD, £_A] (S6)
ox ), ox )i Ox 0

where D, =D AHext =D A ext
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t>0,x=d,:

o) _,
Oox x=da

Expression of the current

The current (noted 7) is evaluated as being proportional to the sum of all oxidized species in the film

being reduced by unit of time:

da
L. %o dx
FS, Ot

0

Dimensionless formulation

We introduce the following dimensionless variables:

QE:_LE_EO),T:;,J/,:;,WZ i ,ah:CAH,a CA,
RT RT | Fv Dex(RT | Fv FSC\A[Dext Fv/ RT Can Can

e, Co G, _KChn o,k

Gy Y c? C Fv/RT T Fv/RT

and the following dimensionless parameters:

0
/= da , 7= CO S_a DH and A= kSCISXH
JDuRT 1 Fv Ciyy S \Dext Dy Fv/RT

Formulation of the problem can thus be rewritten:

Cyclic voltammetry conditions:

O<z<rt;:&=u; +7 with u; <<0
T <T<27;:E=up -7

Diffusion reactions equations:

O<y<l!:
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do_ Dy &% _ orh_ Dy &rh

y<0
dah  0*ah
—:—2+/1+a><h—/1_ah
ot ay

2
0a 078 _, axh+iah
or ayz

2
%=M—1+axh+l_ah
or 8y2
and KA :aXh

Cag ah

Initial and boundary conditions:

0

=0, 0<y<lI: (o)T:0= o and (Vh)fzozo

N
AH

7=0, y<0andy=—o0, Vr:ia=a’and ah=1 and h = K

>0,y=0:

D,

ext

oy

) () 4
Dexi \ Oy =0 oy =0 ox =0

>0,y=1:

(G_OJ _0
oy el

Expression of the current:

Dy (0
Do (_Oj = Aexp(ad)| 0,0 X ahy_o = rhyq xayg exp(=£)]
y=0

(S1°)

(82’)

(S3°)

(S4°)

(S5°)

(S67)
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l

/Eext do
= — _— —d S7’

0
Resolution

Combining (S7’) and (S1°), integrating and taking into account boundary condition, we have:

Dy (0
w=y [— (—OJ and thus (S5”) gives:
Dext ay y:O

7

Aexp(ag) [0y=0 X ahy—q =1y xa,—gexp(~£)] (S8")

Integration of equations (S1°) in the Laplace plane and taking into account boundary conditions and

coming back in the real plane leads to:

T JI
rhy,_o = ljzy L 1 4

70 \/Etanh(lﬁ) T_ndn:7

oy o=l-—[yx| — | ap=1-2%
=0 y£ \/Etanh(lﬁ) 7
-7

in which ! [ f (s )]1—77 represents the inverse Laplace transform of function f (s) at 7 —n value.

Then equation (S8”) becomes:

v _ l )x l )
——=(r—-J ah,_o—J,, xa,_qgexp(— S9
Aexp(af) (7 v y=0 "y 7 %y=0 p(=¢) (597

Combining equations (S2”) to (S4’) leads to:
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8(a +ah)_ o° (a +ah)
or B 6‘)}2

(S10”)

o(ah—h) o*(ah—h)
or - ayz

(S11°)

Integration of (S10°) in the Laplace plane taking into account boundary conditions and coming back in the

real plane leads to:

a+ah=a’+1 and hence: (a)y:O + (ah)yzo —a+1

Integration of (S11°) in the Laplace plane taking into account boundary conditions and coming back in the

real plane leads to:

1 0o
(ah=h),_o= (-1 ( j dn
=0 ( } Dyt J— [r—n\ oy =0
Recalling that: y =y /DH (80] , we have:
Dex \ Oy

1t v 0
n), —(h). =(-r" W —[—Z=—dn=(1-1" )1, ~
(ah), = (1), = ( }J;-([Hn (-#)-1,
We also assume that in most cases, (ah )y=0 >> (h )y=0 , thus:
(ah)yzo zl—lv, and (a)yzo ~a° +1‘/,

Then equation (S10’) becomes, the general equation of the cyclic voltammogram:
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L=( —Jy J(=1, ) Iy x exp (- (S9°)
Aexp(af) VT ( l//) % v [exp(=¢)

3. Procedure for numerical calculation
The general equation of the cyclic voltammogram to be computed is:

C’_
#(ag):(}/—JWXI—IW)—JW CSA +I‘// exp(—f)

AH

T

T
. - 1 1 7
with J =ij L [ S dn and [, =_I—dn
.4 v
) \/gtanh(\lslz) \/; NT—1

(z-n) 0

T
. 1 7
a. Calculation of 1, = — | ———d
ke
0

The integration domain is divided into small intervals within which the current is approximated by a linear

function between the values at the ends of the interval. 7is divided into p divisions with width 4:

7= ph

T ( ) ¢

4 n—-t UL/Z R -n
IWZLJ‘L‘MZIP j] j-1 j-1 %7, dn
Nrl N Z Jon

0 .

thus:
2 |h 4 |h , 4 |h

and

4 =\/§Z§(%_l —l//,-)[(p—jﬂ)y2 —(p—j)3/2}+2[wj x(p=j+ D)=y x(p=N)|[Np=i+1-Ip=Jj]
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b. Calculation of J,, =

j o
01// \/’tanh(/;)(r 2

The Laplace inverse transform is calculated numerically using the Stehfest method:S?

I 1 _ In2
\/Etanhe/sTZ) (T—n)z k2 (/klnz j
(z=n) T—n
1 2 N 1
I I v,
\/_tanh@?) _77 par \/mtanh[ kln2 j
(z-1) Nz—7

in which we consider N =20 and ¥/, ’s are constants given by:

min(k,N/2) N/2
m (2m )!

Ve=(-1)2"" Z (N/2=m)lm!(m—1)!(k—m)!(2m—k)!

mzlnt(@j
2

N

74 \In2

S Ny s
VTS ik h[ ! ]

The integration domain is divided into p small intervals with width # within which the current is
approximated by a linear function between the values at the ends of the interval. In each interval, the

exponential term is approximated by a constant corresponding to the value at the center of the interval:

tanh[l klnzjztanh / I kln2
-1 h
\/Tp_(z-j_l+2j

Hence :

r
JIn2 ( l//jx(ﬂ—fj—l)ﬂﬂj—lx(fj—ﬂ

12 :

=J == V; X

v P op k J- r —

j=1| k=1  ~/ktanh|/ _ K2 r. p
(p—j)h+h/2 -l

dn
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N Tp
_ Vin2 Yp X(”_Tp—l )+ Yp-1% (Tp _”)d
Jp = Jp—l + Vk X 77
- Jk tanh| / kiln2 T,—1
k=l iz )| o
with :

T
J.WP (= p-1 ) vp<(ep =) _2fw e ft//
p- p

T,-1n
p—l
Consequently :
N N
J,o=J .+ v, Vin2 o N LN P I v, VIn2 4 Iy
p v p-l k 3 p-17T3 P p-1 k 3 p
io1 <k tanh| [ kln2 io1 <k tanh| [ kln2
- h/2 - h/2
with

, VIn2 2
p-1=Ip1t E Vi - M) X5\/21/%—1
k=1 x/ztanh(l n ]

h/2

and

S
L
=

VIn2

J =\/ZZ ZVk x

kln2
=1 | k=1 ~ktanh|/ | — "5
’ [\/(p—j)mh/z]

R (R i ) R R S AR ) N e e e |

¢. Discretization of the integral equation:
The integration domain is divided into p intervals within which integrals are calculated as detailed above.

Hence:

Aexp(ag) (7/ JP)(I [P) Ip C_+I exp(=¢)

with:
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2 |h 4
o= [’p—l +§J;Wp—1]+§

VIn2

N
J = J}H + E Vi
k=1 \/% tanh

Thus, we have:

!
= Jpat

leading to a second order equation on

Al//[27+Bl//p+C=O

—B++B?—44xC

heo_ g A h
P S R
iﬁw
, [kin2)13Vx P
hi2

VIn2

nl s /kln2
h/2

EMZ

\/%tanh[l klan

ie. W, = Y
with:

N
4= v, VIn2

hl/2

C=(=Ipa =Tyt )T

k=1 \/Etanh(l kin2

h/2

J [%Jg (1-exp(=5))

% +1, exp(=¢)
A
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4 |h N
3N7 |4 Vi

[(}/ ~Jp )+ J -1 €xp (—é)}

k=1 \ftanh{

kln2
hi/2

When £=0,then4=0and y, =——
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