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1. Experimental Details

1-m thick amorphous TiO2 films were prepared on a conductive planar ITO substrate by glancing angle 

deposition (GLAD) with a deposition angle of 72° as described elsewhere.S1 These films are characterized 

by a surface area enhancement of 540 µm-1 (determined by BET analysis), a volumic density of 2.3 g cm-3, 

and a porosity of 40%. For electrochemistry, a geometric electrode area S of 0.3 cm2 was delimited by 

nail varnish. Mesoporous GLAD TiO2 electrodes were characterized by cyclic voltammetry in a three-

electrode cell using an Autolab PGSTAT-12 potentiostat controlled by a GPES-4 software. The reference 

electrode was a Ag/AgCl/0.3 M KCl electrode (DriRef from WPI) and the counter electrode a platinum 

wire. Experiments were conducted at pH 7.0 in Hepes buffer solutions (concentrations ranging from 0 to 

860 mM) containing 0.3 M KCl. The cell was flushed with argon during the entire experiment and 

thermostated to 25°C. A ohmic drop compensation of 50  was used during the measurement.
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2. Derivation of cyclic voltammogram equation

Glossary of symbols

Proton hopping transport in the film

As depicted in scheme S1, the formation of RH species throughout the film can occur through proton 

hopping between adjacent sites together with electron localization.
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Latin lower case
da:film thickness
dr: distance between adjacent redox centers in the film

: current i

AH/ s
Jj C C
: rate constantsindexk

: standard rate constantSk

 H/ /al d D RT Fv
s: Laplace variable
t: time 
ti: time where the scan is inverted
ui, uf : dimensionless initial and inversion potentials
v: scan rate 
x: distance to the (planar) electrode surface

:dimensionless distance to electrode surfaceA/ /y x D RT Fv
Capital Latin

: volume concentration of the subscript speciesSUBSCRIPTC

: bulk solution volume concentration of the subscript SUBSCRIPT
sC

species
: bulk material volume concentration of the subscript 0

SUBSCRIPTC
species

:diffusion coefficient of the subscript speciesSUBSCRIPTD
E : potential of the electrode 

: initial potentialiE

: potential at scan inversionfE

 standard potential 0E
F: Faraday constant
KA : proton transfer equilibrium constant

: dimensionless convolution integralI
: dimensionless integralJ

L-1: inverse Laplace transform
R: gas constant
S: geometrical electrode surface area 
Sa: apparent electrode surface area
T: absolute temperature

Greek lower case
 :transfer coefficient 
: dimensionless time:  ;  / /t Fv RT 
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Scheme S1. Schematic representation of proton transport
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We introduce the self exchange rate constant:
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Replacing finite difference expression by the corresponding differential expression :

 with  (  is the averaged distance between two sites).
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Cyclic voltammetry conditions
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Diffusion reactions equations
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Initial and boundary conditions
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Expression of the current

The current (noted i) is evaluated as being proportional to the sum of all oxidized species in the film 

being reduced by unit of time:
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Dimensionless formulation

We introduce the following dimensionless variables:

; ; ; ; ;   0F E E
RT

   
/
t

RT Fv
 

ext /
xy

D RT Fv


AH ext /s
i

FSC D Fv RT
  AH

AH
s

Cah
C

 A

AH
s

C
a

C




; ; ; ; H

AH
s

C
h

C


 O

0
O

C
o

C
 RH

0
O

Crh
C

 AH
/

sk C
Fv RT

 
 

/
k

Fv RT
 
 

and the following dimensionless parameters:
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Formulation of the problem can thus be rewritten:

Cyclic voltammetry conditions:

 with 0 :i   iu   0iu 

2 :i i    fu  

Diffusion reactions equations:
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Initial and boundary conditions:
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Expression of the current:

S6



(S7’)ext

H
0

l
D o dy
D

 



 


Resolution

Combining (S7’) and (S1’), integrating and taking into account boundary condition, we have: 
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Integration of equations (S1’) in the Laplace plane and taking into account boundary conditions and 

coming back in the real plane leads to:
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in which  represents the inverse Laplace transform of function  at  value. 1L f s
 




    f s  

Then equation (S8’) becomes:
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Combining equations (S2’) to (S4’) leads to:
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Integration of (S10’) in the Laplace plane taking into account boundary conditions and coming back in the 

real plane leads to:
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Integration of (S11’) in the Laplace plane taking into account boundary conditions and coming back in the 
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We also assume that in most cases, , thus:   0 0y yah h 
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0ya a I  

Then equation (S10’) becomes, the general equation of the cyclic voltammogram:
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3. Procedure for numerical calculation

The general equation of the cyclic voltammogram to be computed is:
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a. Calculation of 
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The integration domain is divided into small intervals within which the current is approximated by a linear 

function between the values at the ends of the interval.  is divided into p divisions with width h:
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b. Calculation of 
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The Laplace inverse transform is calculated numerically using the Stehfest method:S2
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in which we consider N = 20 and ’s are constants given by:kV
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The integration domain is divided into p small intervals with width h within which the current is 

approximated by a linear function between the values at the ends of the interval. In each interval, the 

exponential term is approximated by a constant corresponding to the value at the center of the interval:
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c. Discretization of the integral equation:

The integration domain is divided into p intervals within which integrals are calculated as detailed above. 

Hence:
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