Supporting Information

How to Make Inert Boron Nitride Nanosheet Active for the Immobilization of

Polysulfides for Lithium-Sulfur Batteries: A Computational Study

Yuming Zhao,[‡] Le Yang,[§] Jingxiang Zhao,^{†,‡,*} Qinghhai Cai,^{†,‡} Peng Jin^{§,*}

[†] Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, 150025, China

[‡] Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, and

College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin,

150025, China

[§] School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China

* To whom correspondence should be addressed. Email: xjz_hmily@163.com (JZ); china.peng.jin@gmail.com (JP)

Fig. S1. Structural parameters of pristine, doped, and defective BN nanosheets.

BN

Fig. S2. Calculated nucleus independent chemical shift (NICS) values (ppm) at the ring centers (red), 1 Å above the ring centers (black) and their perpendicular tensors (blue) of various BN nanosheets. The NICS calculations were carried out at the PBE/6-31G* level of theory in Gaussian 09,^{S1} and a finite nanoflake with the edge passivated by hydrogen atoms (not shown) is used for each model.

Fig. S3. The calculated band structures and band gaps of various BN nanosheets.

^{S1} M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci and G. A. Petersson, et al., Gaussian, Inc., Wallingford CT, 2010.