Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2017

Combining random walk and regression models to understand solvation in multi-component solvent systems (Electronic Supplentary Information)

Ella M. Gale,^{*, $\ddagger a,c$} Marcus A. Johns,^{$\ddagger b,d$} Remigius H. Wirawan^{a,d} and Janet L. Scott^a

‡: These authors contributed equally to this work.
E-mail: ella.gale@bath.ac.uk, m.a.johns@bath.ac.uk.
^aDepartment of Chemistry, University of Bath, Clarverton Down, Bath, BA2 7AY, UK.
^bDepartment of Chemical Engineering, University of Bath
^c Current Address: School of Experimental Psychology, University of Bristol, 12a Priory Road, Bristol, BS8 1TU, UK; E-mail: ella.gale@bristol.ac.uk
^d EPSRC Doctoral Training Centre for Sustainable Chemical Technology at the University of Bath

S1 Supplementary Information

Figure S1: Typical dissolution profiles for selected organic electrolyte solutions (OES)s. Points are experimental data measured in pairs of over- and under-estimates of the maximum cellulose dissolvable, the lines are the 1-D random walk fits.

Figure S2: Number of cellobiose residues of cellulose, n_{cell} molecules (taken from molar fraction data) in a mole of mixture against the number of IL pairs. The fit is $n_{cell} = d + \sqrt{m n_{IL}}$. Points are experimental data measured in pairs of over- and under-estimates of the maximum cellulose dissolvable, the lines are the 1-D random walk fits.

Table S1: Coefficients for the $n_{cell}vsn_{IL}$ fits. The equation used was: $n_{cell} = d + m\sqrt{n_{IL}}$. The norm of the residuals is given by R^2 .

Dataset	d	m	R^2
1-MI	-2.27001×10^{21}	1.06328×10^{11}	0.994499
DMSO	-1.40183×10^{22}	1.18428×10^{11}	0.997986
DMF	-2.01097×10^{22}	1.27692×10^{11}	0.997576
DMI	-1.70546×10^{22}	1.29415×10^{11}	0.998327
DMAc	-2.65143×10^{22}	1.37092×10^{11}	0.998610
sulfolane	-2.73645×10^{22}	1.41466×10^{11}	0.996042
γ -but	-2.53112×10^{22}	1.37517×10^{11}	0.996956
γ -val	$-2.82255 imes 10^{22}$	1.39164×10^{11}	0.998441
TMU	$-9.44975 imes 10^{22}$	2.30376×10^{11}	0.985068
NMP	$-1.88558 imes 10^{22}$	1.27419×10^{11}	0.995587

Figure S3: Molar fraction of cellobiose residues in dissolved cellulose versus volume fraction of ionic liquid (as calculated from molar volumes and molar fractions). The amount of cellulose dissolvable in a solution mixture is only related to the volume of IL available suggesting that a space-filling model of dissolution works. Fitted line equation given in Table 2 of the paper.

Figure S4: The number of ionic liquid pairs per cellobiose residue. Upper and lower boundaries (blue lines) are drawn at $n_{IL}/n_{cell} = 1.8 + 1.5 \chi_{IL}$ and $n_{IL}/n_{cell} = 3.7 + 1.5 \chi_{IL}$.

Figure S5: Linear fit of minimum χ_{IL} to linearized CS molar volume.

Name	Key	Molar volume	
		$\rm cm^3 mol^{-1}$	
1-methylimidazole	1-MI	82.4	
dimethylsulfoxide	DMSO	71.3	
n,n-dimethylformamide	DMF	82.628	
1,3-dimethylimidazolidin-2-one	DMI	107.3	
n,n-dimethylacetamide	DMAc	93.02	
sulfolane	Sulfolane	95.27	
gamm+B542a-butyrolactone	$\gamma ext{-But}$	76.8	
gamma-valerolactone	γ -Val	96.2	
1, 1, 3, 3-tetramethylurea	TMU	122.6	
n-methylpyrrolidine-2-one	NMP	96.44	
1-Ethyl-3-methylimidazolium acetate	[EMim][OAc]	165.735	

Table S2: Molar volumes of tested co-solvents and ionic liquid.

Figure S6: Sensitivity of the random walk model parameters. An example fitted model for DMAc is plotted with equations containing \pm 10% of the fitted values. A small change in model parameters causes a small change in the model predictions

Figure S7: Using the random walk model for prediction of DMAc OES data. Yellow: fit (line) to all measured data (dots). Black: fit (line) to subset points (black dots). Only the measurement at around $\chi_{IL} = 0.35$ needs to be measured, the point at $\chi_{IL} = 1$ is known and the point at $\chi_{cell} = 0$ can be estimated from equation 8. The single measurement fit differs from the actual data by only 7.1% on average.

Figure S8: Using the random walk model for prediction of DMSO OES data. Blue: data (dotss) and fit (line) to all measured data. Black: fit (line) to measured or estimated points (dots). Only the measurement at around $\chi_{IL} = 0.4$ needs to be measured, the point at $\chi_{IL} = 1$ is known and the point at $\chi_{cell} = 0$ can be estimated from equation 8. The single measurement fit differs from the actual data by only 9.4% on average.