Aqueous Ionic Liquids and Their Influence on Peptide Conformations: Denaturation and Dehydration Mechanisms

SUPPLEMENTARY MATERIAL

Diddo Diddens, †,§ Volker Lesch,‡ Andreas Heuer,†,§ and Jens Smiatek*,¶

†Institute of Physical Chemistry, University of Münster, Corrensstrasse 28/30, 48149

Münster, Germany

‡Senacor Technologies AG, Joseph-Schumpeter-Allee 1, Bonn, Germany

¶Institute for Computational Physics, University of Stuttgart, D-70569 Stuttgart, Germany

§Helmholtz Institute Münster (HI MS), Ionics in Energy Storage, Forschungszentrum

Jülich GmbH, Corrensstrasse 46, 48149 Münster

E-mail: smiatek@icp.uni-stuttgart.de

1 Convergence of metadynamics simulations

The metadynamics simulations of the β -hairpin peptide in aqueous EMIM/ACE, EMIM/BF4 and EMIM/CL solution had a length of 100 ns, in contrast to pure water, which had a length of 45 ns. We verified the proper convergence of the resulting free energy landscapes by calculation of the free energy landscapes for the individual collective variables (RMSD and R_e) after 85%, 90%, 95% and 100% of simulation time.

1.1 Time evolution of free energy landscape for β -hairpin peptide in pure water

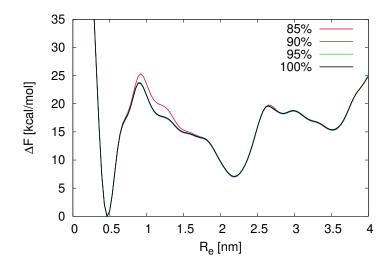


Figure 1: Time evolution of free energy landscape in pure water for collective variable R_e after 85%, 90%, 95% and 100% of simulation time.

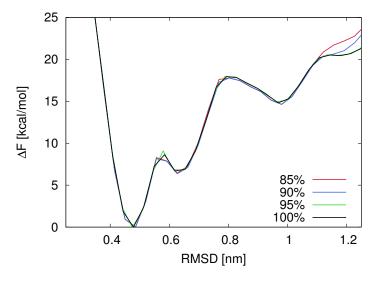


Figure 2: Time evolution of free energy landscape in pure water for collective variable RMSD after 85%, 90%, 95% and 100% of simulation time.

1.2 Time evolution of free energy landscape for β -hairpin peptide in aqueous EMIM/ACE

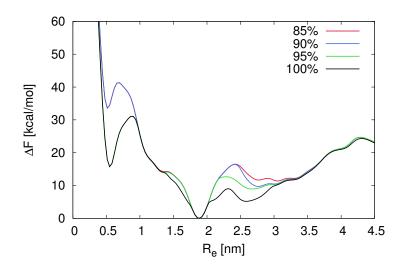


Figure 3: Time evolution of free energy landscape in aqueous EMIM/ACE for collective variable R_e after 85%, 90%, 95% and 100% of simulation time.

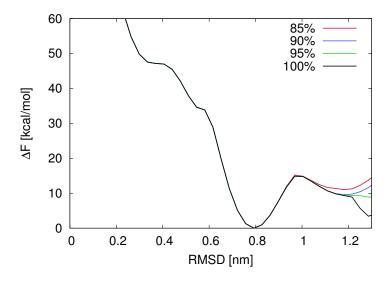


Figure 4: Time evolution of free energy landscape in aqueous EMIM/ACE for collective variable RMSD after 85%, 90%, 95% and 100% of simulation time.

1.3 Time evolution of free energy landscape for β -hairpin peptide in aqueous EMIM/BF4

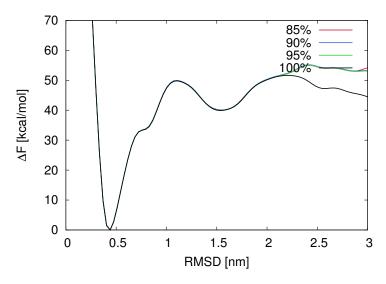


Figure 5: Time evolution of free energy landscape in aqueous EMIM/BF4 for collective variable R_e after 85%, 90%, 95% and 100% of simulation time.

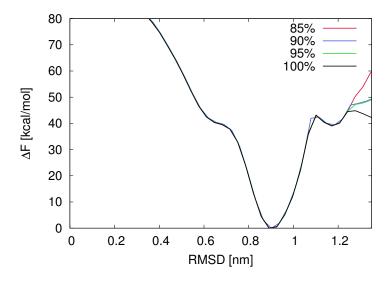


Figure 6: Time evolution of free energy landscape in aqueous EMIM/BF4 for collective variable RMSD after 85%, 90%, 95% and 100% of simulation time.

1.4 Time evolution of free energy landscape for β -hairpin peptide in aqueous EMIM/CL

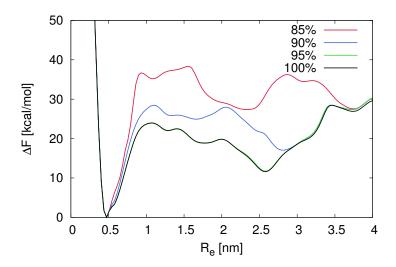


Figure 7: Time evolution of free energy landscape in aqueous EMIM/CL for collective variable R_e after 85%, 90%, 95% and 100% of simulation time.

Figure 8: Time evolution of free energy landscape in aqueous EMIM/CL for collective variable RMSD after 85%, 90%, 95% and 100% of simulation time.

2 Trajectories of collective variables

In the following, we present the trajectories of the collective variables (RMSD and R_e) for the considered systems.

2.1 Trajectories of collective variables in pure water

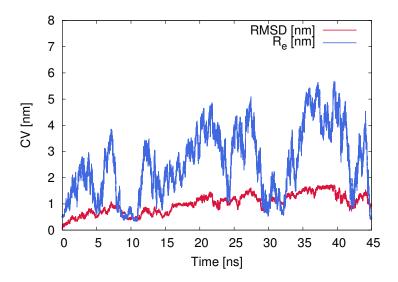


Figure 9: Trajectories of collective variables (CV) for R_e and RMSD in the metadynamics simulations of the β -hairpin peptide in pure water.

2.2 Trajectories of collective variables in aqueous EMIM/ACE

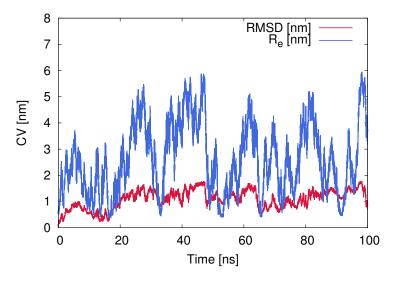


Figure 10: Trajectories of collective variables (CV) for R_e and RMSD in the metadynamics simulations of the β -hairpin peptide in aqueous EMIM/ACE.

2.3 Trajectories of collective variables in aqueous EMIM/BF4

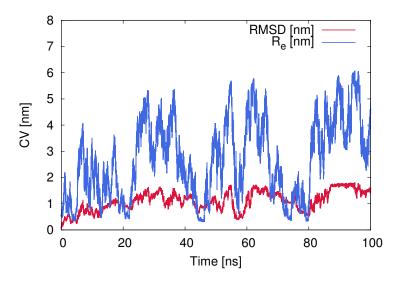


Figure 11: Trajectories of collective variable (CV) for R_e and RMSD in the metadynamics simulations of the β -hairpin peptide in aqueous EMIM/BF4.

2.4 Trajectories of collective variables in aqueous EMIM/CL

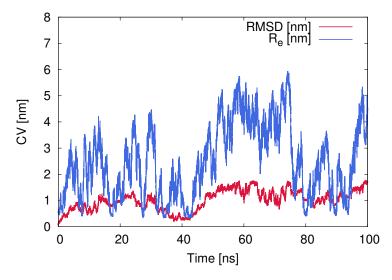


Figure 12: Trajectories of collective variables (CV) for R_e and RMSD in the metadynamics simulations of the β -hairpin peptide in aqueous EMIM/CL.

3 Detailed values and errors for non-bonded interactions between the IL species and the peptide

The following tables present the values and corresponding errors for the non-bonded interactions between the peptide and the IL species as shown in Fig. 5 in the main article. The errors were calculated by a jackknife analysis of ten blocks with equal length.

3.1 Total non-bonded interaction energies between peptide and IL species

Table 1: Nonbonded interaction energies (in kcal mol^{-1}) between the peptide and the IL ions. Only ions up to a radius of 1.2 nm to the peptide have been considered.

IL	Total	Cation	Anion			
Denatured $(E_{(d)})$						
EMIM ACE	-141.4990 ± 5.2360	-54.6590 ± 1.0823	-86.8400 ± 4.6697			
EMIM BF4	-56.5142 ± 1.5888	-48.5939 ± 1.3152	-7.9203 ± 0.4285			
EMIM Cl	-56.9382 ± 1.7616	-43.0703 ± 0.7816	-13.8679 ± 1.8235			
Native $(E_{(n)})$						
EMIM ACE	-72.1247 ± 3.4668	-40.4152 ± 1.0177	-31.7096 ± 2.8722			
EMIM BF4	-38.7988 ± 1.4865	-32.0170 ± 1.0794	-6.7818 ± 0.4877			
EMIM Cl	-50.8245 ± 2.4107	-35.8061 ± 0.8030	-15.0184 ± 2.1943			
$\Delta E_{\rm (d,n)} = E_{\rm (d)} - E_{\rm (n)}$						
EMIM ACE	-69.3743 ± 6.2797	-14.2438 ± 1.4856	-55.1304 ± 5.4823			
EMIM BF4	-17.7154 ± 2.1758	-16.5769 ± 1.7014	-1.1385 ± 0.6492			
EMIM Cl	-6.1137 ± 2.9858	-7.2642 ± 1.1206	1.1505 ± 2.8531			

3.2 Coulomb interaction energies between peptide and IL species

Table 2: Coulomb energies (in kcal mol^{-1}) between the peptide and the IL ions. Only ions up to a radius of 1.2 nm to the peptide have been considered.

Total	Cation	Anion				
Denatured $(E_{(d)})$						
-103.1621 ± 4.5951	-21.4123 ± 0.5011	-81.7498 ± 4.5677				
-22.6745 ± 0.6201	-17.8855 ± 0.5093	-4.7890 ± 0.3538				
-28.5064 ± 2.0796	-13.5401 ± 0.3259	-14.9663 ± 2.0539				
Native $(E_{(n)})$						
-45.3038 ± 3.1082	-16.1295 ± 0.5416	-29.1743 ± 3.0606				
-15.9537 ± 0.5901	-11.8832 ± 0.4616	-4.0705 ± 0.3676				
-29.4811 ± 2.5030	-13.1161 ± 0.4203	-16.3650 ± 2.4675				
$\Delta E_{\rm (d,n)} = E_{\rm (d)} - E_{\rm (n)}$						
-57.8583 ± 5.5476	-5.2828 ± 0.7379	-52.5755 ± 5.4983				
-6.7208 ± 0.8561	-6.0023 ± 0.6874	-0.7185 ± 0.5102				
0.9747 ± 3.2542	-0.4240 ± 0.5318	1.3987 ± 3.2105				
	$\begin{array}{c} \text{Denat} \\ -103.1621 \pm 4.5951 \\ -22.6745 \pm 0.6201 \\ -28.5064 \pm 2.0796 \\ \hline \text{Nat} \\ -45.3038 \pm 3.1082 \\ -15.9537 \pm 0.5901 \\ -29.4811 \pm 2.5030 \\ \hline \Delta E_{(\mathbf{d},\mathbf{n})} \\ -57.8583 \pm 5.5476 \\ -6.7208 \pm 0.8561 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

3.3 Lennard-Jones interaction energies between peptide and IL species

Table 3: Lennard-Jones energies (in kcal mol^{-1}) between the peptide and the IL ions. Only ions up to a radius of 1.2 nm to the peptide have been considered.

IL	Total	Cation	Anion			
Denatured $(E_{(d)})$						
EMIM ACE	-38.3369 ± 0.6311	-33.2467 ± 0.6037	-5.0902 ± 0.1838			
EMIM BF4	-33.8397 ± 0.8232	-30.7084 ± 0.8151	-3.1313 ± 0.1153			
EMIM Cl	-28.4318 ± 0.5314	-29.5302 ± 0.4784	1.0984 ± 0.2313			
Native $(E_{(n)})$						
EMIM ACE	-26.8209 ± 0.5769	-24.2857 ± 0.5144	-2.5352 ± 0.2611			
EMIM BF4	-22.8451 ± 0.6567	-20.1338 ± 0.6448	-2.7113 ± 0.1243			
EMIM Cl	-21.3434 ± 0.4959	-22.6900 ± 0.4133	1.3466 ± 0.2741			
$\Delta E_{\rm (d,n)} = E_{\rm (d)} - E_{\rm (n)}$						
EMIM ACE	-11.5160 ± 0.7310	-8.9610 ± 0.7931	-2.5550 ± 0.3193			
EMIM BF4	-10.9946 ± 1.0530	-10.5746 ± 1.0393	-0.4200 ± 0.1695			
EMIM Cl	-7.0884 ± 0.7269	-6.8402 ± 0.6322	-0.2482 ± 0.3587			