Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2017

Supplementary Information

Table 1 Nonbond Parameters for ClayFF Force Field

species	Symbol	Charge (e)	D ₀ (kcal/mol)	R ₀ (Å)
Water hydrogen	h*	0.4100		
Hydroxyl	ho	0.4250		
hydrogen				
Water oxygen	o^*	-0.8200	0.1554	3.5532
Hydroxyl oxygen	oh	-0.9500	0.1554	3.5532
Tetrahedral	st	2.1000	1.8405*10^-6	3.7064
silicon				
Hydroxide	cah	1.0500	5.0298*10^-6	6.2428
calcium				

Table 2 Bond Parameters for ClayFF Force Field a. bond-stretch of water and hydroxyl groups

species i	species j	k_1 (Kcal/mol/Å ²)	r_{0} (Å)				
h*	o*	554.1349	1.0000				
ho oh		554.1349	1.0000				
b. angle bend of water							

b. angle bena of water						
	species	species	species	k_2 (Kcal/mol/ θ^2)	θ_0	
	i	j	k	(======================================		
	h*	o*	h*	45.7696	109.47	

Large numbers of experimental structures for simple oxides, hydroxides, and oxyhydroxides were employed to derive the optimal values for these parameters. The interaction parameters between the different atoms are obtained according to the arithmetic mean rule for the distance parameter, R_0 , and the geometric mean rule for the energy parameter, D_0 :

$$R_{o,ij} = \frac{1}{2} (R_{0,i} + R_{0,j})$$

$$D_{0,ij} = \sqrt{D_{0,i}D_{0,j}}$$

The short-range interactions in ClayFF force field are described by van der Waals energy represented via Lennard-Jones potential:

$$E_{VDW} = \sum_{i \neq j} D_{0,ij} \left[\left(\frac{R_{0,ij}}{r_{ij}} \right)^{12} - 2 \left(\frac{R_{0,ij}}{r_{ij}} \right)^{6} \right]$$

The Coulombic potential is represented by:

$$E_{Coul} = \frac{e^2}{4\pi\epsilon_0} \sum_{i \neq j} \frac{q_i q_j}{r_{ij}}$$

where the partial charges q_i and q_j can be referred to Table 1, e is the charge of the electron, and ϵ_0 is the dielectric permittivity of vacuum (8.85419 *10⁻¹² F/m).

The bond stretch can angle bend in water molecules and hydroxyl groups can be described by simple harmonic potentials:

$$E_{bond\ stretch\ ij} = k_1(r_{ij} - r_0)^2$$

$$E_{angle\ bend\ ijk} = k_2 (\theta_{ijk} - \theta_0)^2$$

where k_1 and k_2 are radial and angular stiffness, respectively. Parameters r_0 and θ_0 represent the equilibrium hydroxyl bond length and H-O-H angle in water molecules, respectively. (see Table 2)