Electronic Supplementary Information (ESI)

Initial hydration processes of magnesium chloride: size-selected anion photoelectron spectroscopy and *ab initio* calculations

Gang Feng,^{a,b} Cheng-Wen Liu,^c Zhen Zeng,^a Gao-Lei Hou,^a Hong-GuangXu,^{a,d} and Wei-Jun Zheng*^{a,d}

^aBeijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

^b School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China

^cBeijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China ^dUniversity of Chinese Academy of Sciences, Beijing 100049, China *E-mail: zhengwj@iccas.ac.cn

Content:

1) Figure S1: Comparing the experimental VDEs to those of the lowest energy structures of $MgCl_2(H_2O)_n$ clusters calculated by different kinds of method.

2) Figure S2: The NPA charge distributions of the most stable isomer $MgCl_2(H_2O)_{0.6}$ cluster anions and neutrals.

3) Figure S3: Typical low-lying isomers of $MgCl_2(H_2O)_{0.6}$ (n = 0.6) optimized at the $\omega B97XD/6-311++G(d,p)$ level of theory.

4) Figure S4: Typical low-lying isomers of $MgCl_2(H_2O)_{0-6}$ clusters optimized at the $\omega B97XD/6-311++G(d,p)$ level of theory.

5) Table S1: The absolute energies and the zero point energies of the most stable isomers of $MgCl_2(H_2O)_n^-$ (n = 0.7) and the neutrals calculated with $\omega B97XD/6-311++G(d,p)$ level of theory. CCSD(T) /6-311++G(d,p) single point energies based on $\omega B97XD/6-311++G(d,p)$ geometry were also listed.

6) Table S2: Stepwise water binding energies of Lowest energy structures of $MgCl_2(H_2O)_n^-$ (n = 1-7) clusters and their neutrals.

7) Table S3: The Cartesian atomic coordinates of the typical low-lying isomers of MgCl₂(H₂O)_n⁻ (n = 0-7) clusters and the neutrals calculated with ω B97XD/6-311++G(d,p) level of theory.

Figure S1. Comparing the experimental VDEs to those of the lowest energy structures of $MgCl_2(H_2O)_n^-$ clusters calculated by different kinds of method.

We also carried out theoretical calculations by employing LC- ω PBE and CAM-B3LYP functionals to check the performance of ω B97XD functional. The results from the LC- ω PBE and CAM-B3LYP functionals are similar to those from the ω B97XD method. But those from the ω B97XD method are in slightly better agreement with experimental values.

Figure S2. The NPA charge distributions (*e*) of the most stable isomer of MgCl₂(H₂O)₀₋₆ cluster anions and neutrals.

Figure S3.Typical low-lying isomers of $MgCl_2(H_2O)_n^-$ (n = 0.6) optimized at the $\omega B97XD/6-311++G(d,p)$ level of theory and their relative energies (eV).

Figure S4.Typical low-lying isomers of $MgCl_2(H_2O)_n$ (n = 0-6) neutrals obtained at the $\omega B97XD/6-311++G(d,p)$ level of theory and their relative energies (eV).

Table S1. The absolute energies and the zero point energies (in Hartrees) of the most stable isomers of $MgCl_2(H2O)_n^-$ (n=0-7) and the neutrals calculated with $\omega B97XD/6-311++G(d,p)$ level of theory. CCSD(T) /6-311++G(d,p) single point energies based on $\omega B97XD/6-311++G(d,p)$ geometry were also listed.

		Anion		Neutral				
n	CCSD(T)	ωB97XD	ZPE		CCSD(T)	ωB97XD	ZPE	
0	-1119.15702	-1120.685862	0.001841		-1119.123911	-1120.645046	0.002356	
1	-1195.465495	-1197.134379	0.02404		-1195.45148	-1197.118977	0.027793	
2	-1271.785953	-1273.600255	0.050576		-1271.774993	-1273.587909	0.052946	
3	-1348.094252	-1350.054967	0.076428		-1348.090103	-1350.048915	0.076898	
4	-1424.407376	-1426.516793	0.102424		-1424.406491	-1426.507496	0.103444	
5	-1500.721906	-1502.975077	0.128661		-1500.715793	-1502.964142	0.129521	
6	-1577.030904	-1579.433614	0.153989		-1577.026536	-1579.421059	0.155811	
7	_	-1655.889119	0.179429		_	-1655.880317	0.182449	

Table S2. Stepwise water binding energies (WBE, in kJmol⁻¹) of Lowest energy structures of $MgCl_2(H_2O)_n^-$ (n = 1-7) clusters and their neutrals. The WBE is calculated as $WBE = [E(MgCl_2(H_2O)_{n-1}) + E(H_2O)] - E(MgCl_2(H_2O)_n)$

	An	ion	Neutral			
<i>n</i> —	CCSD(T)	ωB97XD	CCSD(T)	ωB97XD		
1	58	42	108	109		
2	89	88	97	96		
3	57	59	75	75		
4	70	77	78	69		
5	74	68	59	64		
6	59	69	64	64		
7	_	61	_	71		

Table S3 The Cartesian atomic coordinates of the typical low-lying isomers of $MgCl_2(H2O)_n^-$ (n = 0-7) clusters and the neutrals calculated with $\omega B97XD/6-311++G(d,p)$ level of theory.

0a				0a'				
	Х	Y	Z			Х	Y	Z
Mg	0.000000	0.00000	0 0.890118	Mg	0.000000	0.000	0.0 0.0	00593
Cl	0.000000	2.00440	8 -0.314159	Cl	0.000000	2.187442 -0.0		00209
Cl	0.000000	-2.004408	8 -0.314159	Cl	0.000000	-2.1874	442 -0.00	00209
1a				1a'				
	Х	Y	Z		Х		Y	Z
Mg	-0.000103	0.222382	0.000035	Mg	-0.0001	03	0.222382	0.000035
Cl	2.039646	-0.769362	0.000074	Cl	2.03964	46 -0	.769361	0.000074
Cl	-2.040437	-0.768098	0.000015	Cl	-2.0404	37 -(0.768099	0.000015
0	0.001343	2.228413	-0.000319	0	0.0013	42	2.228413	-0.000319
Н	0.786977	2.819620	0.000876	Н	0.7869	76	2.819620	0.000876
Н	-0.783032	2.821302	-0.000270	Н	-0.7830	33 2	2.821302	-0.000270
2a				2a'				
	Х	Y	Z		Х		Y	Z
Mg	0.000078	0.055708	-0.000002	Mg	0.0000	002	0.000024	-0.049464
Cl	2.041254	-0.970474	0.250156	Cl	-2.1863	97 -(0.000014	-0.640530
Cl	-2.040957	-0.970813	-0.250255	Cl	2.1863	350 -	0.000024	-0.640717
0	0.554075	1.519581	-1.387817	0	0.0000	30 -1	1.728177	1.117069
Н	0.249953	2.431931	-1.184727	Н	-0.7833	-0.783354 -2.284118		1.125517
Н	1.515233	1.580225	-1.471468	Н	0.7834	0.783404 -2.284133		1.125463
0	-0.554627	1.519195	1.388011	0	0.000049 1.728215		1.117022	
Н	-0.250917	2.431695	1.185010	Н	0.783430 2.284158		2.284158	1.125509
Н	-1.515848	1.579323	1.471333	Н	-0.7833	35 2	2.284154	1.125557
3a				3a'				
	Х	Y	Z		Х		Y	Z
Mg	0.464966	0.006200	0.034386	Mg	0.0000	- 28	0.006590	0.393748
Cl	-1.071478	1.738559	0.281309	Cl	2.0719	987	0.014163	-0.824964
Cl	2.690162	0.233578	-0.450546	Cl	-2.0720	031	0.013167	-0.824883
0	-0.600970	-1.319193	-1.163562	О	0.0005	74 -2	2.151606	-0.019151
Н	-0.491740	-2.240385	-0.880032	Н	0.7758	93 -2	2.207303	-0.591452
Н	-1.567688	-1.142357	-1.082867	Н	-0.7753	45 -2	.207712	-0.590606
0	0.453953	-1.278572	1.658911	О	-0.0006	25 2	2.150362	0.048306
Н	-0.244869	-1.969040	1.728333	Н	-0.7760	84 2	2.222149	-0.522133
Н	1.281559	-1.720421	1.895670	Н	0.7752	.93	2.222641	-0.521451
0	-3.117103	-0.605858	-0.426554	О	0.0001	04 -(0.038393	2.412418
Н	-2.771001	0.248372	-0.114865	Н	-0.7777	81 -0	0.041313	3.007892
Н	-3.190517	-1.147915	0.367803	Н	0.7780	-016	0.056905	3.007579
4a				4a'				
	Х	Y	Z		Х		Y	Z
Mg	0.699651	0.150306	-0.104642	Mg	0.000	0007	0.001652	0.000146
Cl	2.657947	-1.067487	0.065432	Cl	2.378	8877	-0.006820	0.005642
Cl	-3.043667	-0.315937	0.119154	Cl	-2.379	103	0.006395	-0.006876
0	1.629400	1.994773	-0.018625	0	0.004	893	-0.971060	-1.918831
Н	1.206673	2.867984	0.159843	Н	0.790	283	-0.748845	-2.426669
Н	2.567320	2.077922	0.198624	Н	-0.770	996 -	0.738748	-2.436568
0	-0.493870	0.542992	1.568156	0	0.014	693	1.920979	-0.969015
Н	-1.431760	0.333807	1.344417	Н	-0.759	121	2.444238	-0.742399

Н	-0.467613	1.463395	1.863292	Н	0.802098	2.423928	-0.742529
0	-0.424575	-1.572777	-0.478209	0	-0.015018	-1.919434	0.969416
Н	-0.094439	-2.389964	-0.098808	Н	-0.804751	-2.419070	0.743414
Н	-1.388858	-1.464246	-0.290166	Н	0.756485	-2.444934	0.740444
0	-0.701734	1.042857	-1.389465	0	-0.003927	0.968783	1.920808
Н	-1.605494	0.752588	-1.131717	Н	0.773006	0.734602	2.436250
Н	-0.698178	2.010290	-1.382595	Н	-0.788364	0.742092	2.428271
5a				5a'			
	Х	Y	Z		Х	Y	Z
Mg	0.577924	0.253366	-0.002983	Mg	-0.307526	0.100756	-0.002150
CI	2.044479	-1.619801	-0.152422	Cl	-2.445179	-1.013701	0.035418
Cl	-0.647086	-0.526605	-1.555933	Cl	1.709486	1.414024	-0.033454
0	-1 585792	-0 551386	-1 259914	0	-0.643651	0 484094	-2 102744
н	-0.405753	-1 429322	-1 784298	н	-1 238869	-0 196935	-2 432060
н	1 779406	1.048394	1 598832	н	0 155848	0.465162	-2 634761
0	2 221206	1.858/08	1.309790	0	0.648387	-1 701645	-0.492264
ч	2.221200	0.207721	1.691265	U U	1 601201	1 201222	0.275662
п п	2.400393	1 485522	1.001303	11 L	0.174544	-1.001200	-0.273002
п	1.703173	1.465555	-1.225808	н	1 402077	-2.302352	-0.200323
0	2.393222	1.10/110	-1.854247	U	-1.402077	1.922259	0.452151
н	1.64188/	2.415414	-1.498204	Н	-1.02/2/8	2.695305	0.001//4
Н	-0.898827	1./38/40	0.1958/4	Н	-2.307883	1.812072	0.126023
0	-0.893931	2.520139	-0.369994	0	-0.199814	-0.227397	2.118143
Н	-1.795145	1.341095	0.124662	Н	-1.095270	-0.450133	2.395600
Н	-0.612619	-0.782364	1.430112	Н	0.077297	0.550009	2.609226
0	-1.563638	-0.734022	1.180636	0	3.232665	-1.318983	0.001609
Н	-0.378615	-1.715321	1.392305	Н	3.991677	-1.369216	0.583613
Н	-3.228567	-0.260188	0.008514	Н	2.781653	-0.483847	0.224170
6a				6a'			
	Х	Y	Z		Х	Y	Z
Mg	-0.013352	0.749877	-0.092564	Mg	0.006973	0.312290	0.003853
Cl	3.083632	-1.477616	0.009794	Cl	2.147327	0.493094	1.146222
Cl	-3.027548	-1.540322	0.004035	Cl	-2.137080	0.459199	-1.166099
0	-1.638615	0.803806	-1.431461	О	0.869274	1.402620	-1.640315
Н	-2.242530	0.062360	-1.190276	Н	1.596957	1.961375	-1.353705
Н	-2.176822	1.604203	-1.438563	Н	0.223104	1.954655	-2.088972
0	-1.423803	0.569935	1.520613	0	-0.518613	2.236954	0.867635
Н	-2.071521	-0.127377	1.255748	Н	-1.476307	2.308859	0.918112
Н	-1.934706	1.372405	1.683850	Н	-0.163570	2.329830	1.755877
0	-0.004606	-1.297645	-0.276738	0	0.423469	-1.520399	-0.929838
Н	0.807824	-1.823527	-0.208464	Н	-0.029932	-1.653405	-1.764445
Н	-0.823808	-1 819652	-0 214044	Н	1 371193	-1 752822	-1 039827
0	1 437906	0.616947	1 479753	0	-0.819662	-0.616324	1 715531
н	2 108492	-0.056049	1 211093	н	-0 179274	-1 126522	2 215175
н	1 002443	0.050045	2 265434	н	-1 613431	-1 172425	1 554246
0	1.624070	0.782386	-1 416737	0	-3.018788	-1 821/139	0.778525
U U	2 121860	1 505765	-1.410/37	ч	-3.013788	1 727771	1 122758
н ц	2.131809	0.054229	-1.421097	II U	-3.907955	1 219727	0.012970
0	2.244300	0.034220	-1.1/3088	11	-2.909037	-1.210/3/	0.013079
U	0.063394	2.842/25	0.049113	U	3.092288	-1./2814/	-0.843311
н	-0.722175	3.394/90	-0.158544	Н	3.088501	-1.00/305	-0.18/06/
Н	0.416670	3.227109	0.868481	Н	3.578662	-2.448309	-0.441169
7.				7~'			
/ d	v	v	7	/a	v	v	7
Ma	0 652224	0.950750	0.045204	Ma	0 4 4 9 6 7 0	0.052000	0.14(00)
NIg Cl	-0.000000	-0.839/39	-0.045204	Mg	0.448670	-0.053090	0.140883
	2.042/25	0.8394//	-0.821963	CI	2.020435	0.963898	-1.459439
CI CI	-1.814346	2.73/204	0.21/589	CI	-5.425934	-1.024396	-0.35/339
0	-0.414168	0.578596	-1.589059	U 10	-0.649381	-0.833714	-1.456987
				10			

Н	0.532548	0.820567	-1.632046	Н	-1.620311	-0.958959	-1.300157
Н	-0.865043	1.396240	-1.293659	Н	-0.528671	-0.420644	-2.314370
0	-2.514949	-0.112795	0.555891	0	-0.406820	1.846786	0.347504
Н	-3.265864	-0.430480	0.050098	Н	-1.386875	1.959972	0.428563
Н	-2.512643	0.880891	0.507760	Н	-0.094086	2.436291	-0.343392
0	1.166119	-1.712470	-0.634578	0	-1.024903	-0.808937	1.401981
Н	1.523466	-2.368262	-0.032186	Н	-0.869074	-1.459274	2.086329
Н	1.851135	-1.000712	-0.752444	Н	-1.912222	-0.984195	0.998803
0	-0.703797	-2.348831	1.475912	0	1.677185	0.391621	1.837330
Н	-1.124929	-2.082571	2.301536	Н	2.616999	0.224890	1.653982
Н	-1.112136	-3.209916	1.236596	Н	1.588267	1.312530	2.093073
0	0.266539	0.576926	1.219757	0	1.517712	-1.917026	0.163807
Н	1.135025	0.795717	0.823577	Н	2.477946	-1.777553	0.207314
Н	-0.248440	1.406236	1.158823	Н	1.331295	-2.395858	-0.647524
0	-1.742658	-2.199903	-1.290029	0	3.873469	-0.492545	0.430514
Н	-2.026466	-3.048029	-0.883004	Н	3.563805	0.060245	-0.320736
Н	-1.309663	-2.441334	-2.117162	Н	4.829872	-0.529289	0.395836
0	3.166752	0.084445	1.369131	0	-3.048132	1.901349	0.505736
Н	3.717691	0.337709	0.624870	Н	-3.675166	2.500865	0.101140
Н	3.672164	-0.470260	1.967847	Н	-3.325380	0.996261	0.244707