Supplementary information for:-

"Mixing scheme of the aqueous solution of tetrabutylphosphonium trifluoroacetate in the water-rich region"

Ayako Nitta, ${ }^{1}$ Takeshi Morita, ${ }^{1}$ Keiko Nishikawa, ${ }^{1}$ and Yoshikata Koga ${ }^{2 *}$

1: Division of Nano Science, Graduate School of Advanced Integration Science, Chiba
University, Chiba 263-8522, Japan
2: Department of Chemistry, The University of British Columbia, Vancouver, BC, V6T 1Z1, Canada

1. Calculation of the apparent excess partial molar volumes

For binary systems of ionic liquid (IL) and water, the molar volume are divided into the ideal part, ${ }^{V_{m}^{\text {ideal }}}$, and the excess part, V_{m}^{E}, as,

$$
\begin{equation*}
V_{m}=V_{m}^{\text {ideal }}+V_{m}^{E}=\left\{V_{I L}^{*} x_{I L}+V_{W}^{*}\left(1-x_{I L}\right)\right\}+V_{m}^{E} . \tag{S-1}
\end{equation*}
$$

$V_{m}^{\text {ideal }}$ can be calculated using the molar volumes of pure liquid IL, $V_{I L}^{*}$, and water, V_{W}^{*}, and the mole fraction of IL, ${ }^{x}$, and it is linear to ${ }^{x_{I L}}$.

However, for the aqueous solution of $\left[\mathrm{P}_{4,4,4,4}\right] \mathrm{CF}_{3} \mathrm{COO}$, pure $\left[\mathrm{P}_{4,4,4,4}\right] \mathrm{CF}_{3} \mathrm{COO}$ is a solid at room temperature and it is not possible to obtain $V_{I L}^{*}$. We, therefore, define the "apparent" ideal molar volume of the present system, $V_{m, a p}^{\text {ideal }}$, using the data set at ${ }^{\prime}$ IL= 0.000 and at 0.079 , assuming that $V_{m, a p}^{\text {ideal }}$ passes through the V_{m} value at the uppermost
data point, ${ }^{X} I L=0.079$. Hence,

$$
\begin{equation*}
V_{m, a p}^{i d e a l}\left(x_{I L}\right)=x_{I L} \cdot \frac{V_{m\left(x_{I L}=0.079\right)}-V_{W}^{*}}{0.079}+V_{W}^{*}, \tag{S-2}
\end{equation*}
$$

and the "apparent" molar volume of "pure liquid $\left[\mathrm{P}_{4,4,4,4}\right] \mathrm{CF}_{3} \mathrm{COO}^{\prime}$ at ${ }^{x}$ IL=1 is expressed as,

$$
\begin{equation*}
V_{I L, a p}^{*}=\frac{V_{m\left(x_{I L}=0.079\right.}-V_{W}^{*}}{0.079}+V_{W}^{*} . \tag{S-3}
\end{equation*}
$$

According to the equation (S-1), the "apparent" excess molar volume is then written as,

$$
\begin{equation*}
V_{m, a p}^{E}\left(x_{I L}\right)=V_{m}\left(x_{I L}\right)-V_{m, a p}^{i d e a l}\left(x_{I L}\right) . \tag{S-4}
\end{equation*}
$$

Figure S1-1 shows the apparent excess molar volumes, $V_{m, a p}^{E}$, at $25{ }^{\circ} \mathrm{C}$. In this concentration region $V_{m, a p}^{E}$ shows negative value and concave downward. The smooth curve was drawn through all the data points using a flexible ruler as the solid line in the figure.

Then the apparent excess partial molar volume of IL, ${ }_{I L, a p}^{E}$, is calculated as,

$$
\begin{equation*}
V_{I L, a p}^{E}=\left(1-x_{I L}\right)\left(\frac{\partial V_{m, a p}^{E}}{\partial x_{I L}}\right)+V_{m, a p}^{E} . \tag{S-5}
\end{equation*}
$$

We differentiated $V_{m, a p}^{E}$ graphically using the smooth curve by reading the values off the smooth curve at every 0.001 mole fraction of $\left[\mathrm{P}_{4,4,4,4}\right] \mathrm{CF}_{3} \mathrm{COO}$ and calculate partial molar volume of $\left[\mathrm{P}_{4,4,4,4}\right] \mathrm{CF}_{3} \mathrm{COO}$ as,

$$
\begin{equation*}
V_{I L, a p}^{E}=\left(1-x_{I L}\right)\left(\frac{\Delta V_{m, a p}^{E}}{\Delta x_{I L}}\right)+V_{m, a p}^{E} \tag{S-6}
\end{equation*}
$$

$\Delta V_{m, a p}^{E}$ indicates the amount of change of $V_{m, a p}^{E}$ at $\Delta x_{I L=0}=0.01$ intervals. The apparent
excess partial molar volume of water, $V_{W, a p}^{E}$, is calculated by the same manner.

2. Graphical differentiation using a flexible ruler

To obtain the next higher order derivative quantities, graphical differentiation using a flexible ruler was applied on the measured data as shown in Figure S1-1. The advantage of graphical differentiation for the differential thermodynamics in dilute region was discussed extensively elesewhere. ${ }^{1-3}$ The fact that B-spline method is not able to reflect inflection points of data has been discribed. ${ }^{2,3}$

Conventionally, such a fitting function as the Redlich-Kister polynomial ${ }^{4}$ is used to raise the order of derivative by a step. It is known as one of the popular fitting functions of excess quantities for binary systems written as,

$$
\begin{equation*}
V_{m}^{E}(x)=x(1-x) \sum_{i=0}^{n} A_{i}(2 x-1)^{i} \tag{S-7}
\end{equation*}
$$

where ${ }^{x}$ is mole fraction of a solute, ${ }_{i}$'s are the fitted polynomial coefficients and n is its degree. Figure S1-2 shows the obtained fitting curves by a flexible ruler (dotted line) and the Redlich-Kister polynomial of $n=2$ (solid line). On increasing to $n=3$, the fitting curve became wavy, and the case of $\mathrm{n}=2$ seems most appropriate. As shown in Figure S1-2, the inflection point apparent around at $x_{I L=} 0.03$ along the dotted curve is not reproduced on the solid curve obtained by latter. Thus, equation (S-7) is not suitable for the present mole fraction range.

Numerical differentiation is another method which reflects the experimental fact perfectly and model-free. For this purpose, the quality of all the data points with small increments ought to be very high with at the least 4 significant figures. In the previous study ${ }^{5}$, we successfully obtained the third derivative quantities with at least 3 significant
figures by numerical differentiation. When the data contain a sporadic error as for the present case apparent at about $x_{\mathrm{IL}}=0.055$ in Fig. S1-1, the numerical method cannot be used, otherwise devastating error will be introduced. In such cases, we have to use human judgement and draw a smooth curve through all the data points by the aid of a flexible ruler.

References

1 M. T. Parsons, P. Westh, J. V Davies, C. Trandum, E. C. H. To, W. M. Chiang, E. G. M. Yee and Y. Koga, J. Solution Chem., 2001, 30, 1007-1028.

2 Y. Koga, H. Katayanagi, J. V. Davies, H. Kato, K. Nishikawa and P. Westh, Bull. Chem. Soc. Jpn., 2006, 79, 1347-1354.

3 Y. Koga, Solution Thermodynamics and its Application to Aqueous Solutions, 1st Edition A Differential Approach, Elsevier Science, 2 ${ }^{\text {nd }}$ Ed., Amsterdam, 2017, Appendix A pp. 395-396.

4 O. Redlich and A. T. Kister, Ind. Eng. Chem., 1948, 40, 345-348.
5 T. Morita, K. Miki, A. Nitta, H. Ohgi and P. Westh, Phys. Chem. Chem. Phys., 2015, 17, 22170-22178.

Figure S1-1 The apparent excess molar volume of the aqueous solution of $\left[\mathrm{P}_{4,4,4,4}\right] \mathrm{CF}_{3} \mathrm{COO},{ }^{V}{ }_{m, a p}^{E}$, at $25^{\circ} \mathrm{C}$ against ${ }^{\prime} x_{I L}$. The uncertainty is estimated as $\pm 0.002 \mathrm{~cm}^{3}$ mol^{-1}. There is a sporadically bad point at about $x_{\mathrm{IL}}=0.06$, which was ignored. The solid curve is a smooth curve drawn with a flexible ruler.

Figure S1-2 The smooth curves fitted on the plots of the measured apparent excess
partial molar volume, ${ }^{V} \underset{m, a p}{E}$, at $25^{\circ} \mathrm{C}$. The uncertainty for these data points is estimated as $\pm 0.002 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$. The solid curve was obtained by Redlich-Kister polynomial with $\mathrm{n}=2$ and the dotted line was drawn manually using a flexible ruler.

