Difference in chemical bonding between lithium and sodium salts: influence of covalency on their solubility

Su Chen,^a Jun Ishii,^b Shunsuke Horiuchi,^b Masahiro Yoshizawa-Fujita^b and Ekaterina I Izgorodina^{*,a}

^a School of Chemistry, Monash University, 17 Rainforest Walk, Clayton, Victoria, 3800 AUSTRALIA

^b Department of Materials and Life Sciences, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, JAPAN

SUPPLEMENTARY INFORMATION

Conf2

Conf3

 $\label{eq:conf1} Conf1 Conf2 \\ \mbox{Figure S1. Optimized structures of LiFSI in gas phase (a-c) and in CHCl_3 (d-f)}$

Conf1

Conf2

Conf3

Conf2

Conf1Conf2Conf3Figure S2. Optimized structures of LiFSI in a-c) gas phase, d-f) CHCl3 and h-j) DMSO.

Conf2

h)

Figure S3. Optimized structures of a) $LiBF_4$ in gas phase, b-c) $LiPF_6$ in gas phase, d) LiDCA in gas phase, f) $LiBF_4$ in gas phase, e) $LiPF_6$ in gas phase and g) LiDCA in gas phase.

Figure S4. Optimized structures in gas phase a) NaBF₄, b) NaPF₆, c) NaDCA, in CHCl₃ e) NaBF₄, f) NaPF₆, g) NaDCA, , in DMSO h) NaBF₄, j) NaPF₆, k) NaDCA,

MX	Configuration	Solvent	R_{Centre}^{a}	R _{Closest} b	E _{int} c	MX	Configuration	Solvent	R_{Centre}	$R_{Closest}$	E _{int}
LiFSI	Conf1	Gas	3.28	1.81	-599.6	NaFSI	Conf1	Gas	3.56	2.19	-488.7
		CHCl₃	3.49	1.96	-579.1			CHCl ₃	3.88	2.33	-475.3
		DMSO	3.58	2.04	-563.2			DMSO	4.01	2.44	-462.9
	Conf2	Gas	3.22	1.80	-606.8		Conf2	Gas	3.64	2.16	-491.8
		CHCl₃	3.43	1.93	-585.9			CHCl ₃	3.85	2.27	-481.5
		DMSO	3.49	1.97	-575.4			DMSO	3.95	2.34	-473.5
	Conf3	Gas	3.19	1.80	-609.9		Conf3	Gas	3.58	2.17	-495.3
		CHCl₃	3.49	1.96	-579.0			CHCl ₃	3.80	2.28	-484.5
		DMSO	3.58	2.04	-563.2			DMSO	3.90	2.38	-474.8
LiBF ₄	Conf1	Gas	2.05	1.91	-621.6	$NaBF_4$	Conf1	Gas	2.39	2.23	-525.5
		CHCl₃	2.46	1.93	-593.6			CHCl ₃	2.57	2.42	-508.3
		DMSO	2.57	2.04	-572.1			DMSO	2.91	2.35	-487.3
LiPF ₆	Conf1	Gas	2.63	1.77	-591.3	$NaPF_{6}$	Conf1	Gas	2.79	2.19	-501.7
		CHCl₃	2.85	1.99	-543.8			CHCl₃	2.99	2.39	-479.5
		DMSO	2.91	2.06	-526.3			DMSO	3.10	2.50	-463.4
	Conf2	Gas	2.42	1.88	-604.1						
		CHCl₃	2.67	2.11	-557.7						
		DMSO									
Lidca	Conf1	Gas	2.89	2.07	-600.4	NaDCA	Conf1	Gas	3.15	2.42	-501.2
		CHCl₃	4.35	1.90	-538.3			CHCl₃	4.72	2.27	-446.3
		DMSO	4.43	1.98	-528.0			DMSO	4.79	2.33	-440.1

Table S1 inter-ionic distances (in Å) and CCSD(T) interaction energy of MX salts (where M=Li and Na, X=FSI, BF_4 , PF_6 and DCA).

^a R_{Centre} – distance between the metal ion and the centre of the anion; ^b $R_{Closest}$ – distance between the metal ion and the closest atom on the anion (O on FSI, F on BF₄ and PF₆ and N on DCA); ^c E_{int} = is the total interaction energy (full-core CCSD(T)/VTZ for NaFSI/LiFSI and full-core CCSD(T)/AVTZ for the rest of salts).

	1s ²		1s ²	2s ²	2p ⁶		2s ²	2p ⁶
	Li⁺	LiFSI		Na⁺	Na^+	NaFSI		
Gasphase	-2.79	Conf1	-2.49	-3.08	-1.80	Conf1	-2.84	-1.56
		Conf2	-2.48			Conf2	-2.83	-1.56
		Conf3	-2.48			Conf3	-2.83	-1.56
CHCl3	-2.48	Conf1	-2.51	-2.82	-1.54	Conf1	-2.86	-1.58
		Conf2	-2.51			Conf2	-2.85	-1.57
		Conf3	-2.51			Conf3	-2.85	-1.57
DMSO	-2.41	Conf1	-2.53	-2.76	-1.48	Conf1	-2.87	-1.59
		Conf2	-2.52			Conf2	-2.86	-1.58
		Conf3	-2.53			Conf3	-2.86	-1.59
Gasphase	-2.79	LiBF4	-2.50	-3.08	-1.80	NaBF4	-2.83	-1.56
		LiPF6(Conf1)	-2.51			NaPF6	-2.86	-1.56
		LiPF6 (Conf2)	-2.50			NaDCA	-2.88	-1.56
		Lidca	-2.49	-				
CHCl3	-2.48	LiBF4	-2.53	2.82	-1.54	NaBF4	-2.84	-1.58
		LiPF6Conf1	-2.55			NaPF6	-2.87	-1.59
		LiPF6Conf2	-2.55			NaDCA	-2.88	-1.59
		Lidca	-2.53					
DMSO	-2.41	LiBF4	-2.54	-2.76	-1.48	NaBF4	-2.84	-1.59
		LiPF6	-2.56			NaPF6	-2.86	-1.60
		Lidca	-2.54			NaDCA	-2.88	-1.60

Table S2. Orbital Energies (in eV) of MX (where M= Li and Na, X = FSI, BF₄, DCA and PF₆)^a

^a For 2p⁶ electrons an average of the three degenerate orbitals is given.

Mathad	Gas Phase	Full	Frozen	Cas phase	Full	Frozen
Methou	Gas Fliase	core	core	Gas pliase	core	core
CCSD(T)/AVTZ	LiFSI(Conf1)	-	13.6	NaFSI(Conf1)	-	2.3
	LiFSI(Conf2)	-	15.6	NaFSI(Conf2)	-	7.4
	LiFSI(Conf3)	-	15.5	NaFSI(Conf3)	-	6.5
CCSD(T)/VTZ	LiFSI(Conf1)	3.6	7.8	NaFSI(Conf1)	-0.4	-0.6
	LiFSI(Conf2)	5.3	9.6	NaFSI(Conf2)	4.8	4.5
	LiFSI(Conf3)	5.1	9.4	NaFSI(Conf3)	3.9	3.5
MP2/AVTZ	LiFSI(Conf1)	11.7	16.9	NaFSI(Conf1)	4.6	4.6
	LiFSI(Conf2)	13.8	19.1	NaFSI(Conf2)	10.5	10.4
	LiFSI(Conf3)	13.6	18.9	NaFSI(Conf3)	9.5	9.4
MP2/VTZ	LiFSI(Conf1)	6.9	10.7	NaFSI(Conf1)	1.0	0.8
	LiFSI(Conf2)	8.9	5.2	NaFSI(Conf2)	7.1	6.8
	LiFSI(Conf3)	8.6	12.5	NaFSI(Conf3)	6.0	5.7
CCSD(T)/AVTZ	LiBF ₄	-2.2	3.0	$NaBF_4$	0.7	0.6
	LiPF ₆ (Conf1)	2.5	7.4	NaPF ₆	1.6	1.4
	LiPF ₆ (Conf2)	-1.0	4.6	NaDCA	-0.6	-0.7
	LiDCA	2.4	6.9			
CCSD(T)/VTZ	LiBF ₄	-5.7	-1.7	$NaBF_4$	-1.5	-1.8
	LiPF ₆ (Conf1)	-1.7	1.8	$NaPF_6$	-1.5	-1.8
	LiPF ₆ (Conf2)	-5.4	-1.4	NaDCA	-1.0	-1.2
	LiDCA	1.5	4.9			
MP2/AVTZ	LiBF ₄	-0.4	4.1	$NaBF_4$	2.3	2.3
	LiPF ₆ (Conf1)	4.0	8.3	$NaPF_{6}$	2.9	2.8
	LiPF ₆ (Conf2)	0.5	5.4	NaDCA	1.2	1.0
	LiDCA	5.3	9.5			
MP2/VTZ	LiBF ₄	-4.8	-1.3	$NaBF_4$	-0.8	-1.0
	LiPF ₆ (Conf1)	-0.8	2.3	NaPF ₆	-1.1	-1.3
	LiPF ₆ (Conf2)	-4.7	-1.2	NaDCA	0.2	0.0
	Lidca	9.2	7.0			

Table S3. Correlation interaction energies (E_{int}^{corr} kJ mol⁻¹) of MX salts in gas phase based on CCSD(T) and MP2 and Dunning's basis sets.

Table S4. Correlation interaction energies (E_{int}^{corr} kJ mol⁻¹) of MX salts in solvents on CCSD(T) and MP2 and Dunning's basis sets.

Method			Full	Frozen	Gas phase	Full	Frozen
			core	core		core	core
CCSD(T)/AVTZ	CHCl₃	LiFSI(Conf1)	-	8.6	NaFSI(Conf1)	-	2.5
		LiFSI(Conf2)	-	10.9	NaFSI(Conf2)	-	5.5
		LiFSI(Conf3)	-	8.6	NaFSI(Conf3)	-	4.9
	DMSO	LiFSI(Conf1)	-	6.2	NaFSI(Conf1)	-	1.3
		LiFSI(Conf2)	-	9.4	NaFSI(Conf2)	-	5.7
		LiFSI(Conf3)	-	6.2	NaFSI(Conf3)	-	4.0
CCSD(T)/VTZ	CHCl₃	LiFSI(Conf1)	0.4	3.3	NaFSI(Conf1)	-0.2	-0.4
		LiFSI(Conf2)	2.4	5.4	NaFSI(Conf2)	2.6	2.4
		LiFSI(Conf3)	0.4	3.3	NaFSI(Conf3)	1.9	1.7
	DMSO	LiFSI(Conf1)	-1.2	1.2	NaFSI(Conf1)	-1.5	-1.6
		LiFSI(Conf2)	1.3	4.0	NaFSI(Conf2)	1.2	1.2
		LiFSI(Conf3)	-1.2	1.2	NaFSI(Conf3)	0.9	0.8
MP2/AVTZ	CHCl₃	LiFSI(Conf1)	7.7	11.2	NaFSI(Conf1)	4.8	4.8
		LiFSI(Conf2)	10.3	13.9	NaFSI(Conf2)	8.2	8.2
		LiFSI(Conf3)	7.7	11.2	NaFSI(Conf3)	7.4	7.4
	DMSO	LiFSI(Conf1)	5.6	8.5	NaFSI(Conf1)	3.2	3.2
		LiFSI(Conf2)	9.0	12.2	NaFSI(Conf2)	8.8	8.0
		LiFSI(Conf3)	5.6	8.5	NaFSI(Conf3)	6.3	6.2
MP2/VTZ	CHCl₃	LiFSI(Conf1)	3.0	5.6	NaFSI(Conf1)	1.3	1.2
		LiFSI(Conf2)	5.4	8.1	NaFSI(Conf2)	4.7	4.5
		LiFSI(Conf3)	3.0	5.6	NaFSI(Conf3)	3.8	3.7
		LiFSI(Conf1)	1.0	3.1	NaFSI(Conf1)	-0.3	-0.3
		LiFSI(Conf2)	4.1	6.5	NaFSI(Conf2)	3.1	3.1
		LiFSI(Conf3)	1.0	3.1	NaFSI(Conf3)	2.6	2.5
CCSD(T)/AVTZ	CHCl₃	LiBF ₄	-0.9	2.3	NaBF ₄	-3.0	-3.0
		LiPF ₆ (Conf1)	-2.9	-0.2	NaPF ₆	-2.6	-2.6
		$LiPF_6$ (Conf2)	-5.6	-2.8	NaDCA	1.1	1.0
		LIDCA	1.9	4.8			
	DMSO	LiBF ₄	-2.5	-2.5	LiBF ₄	-1.0	-1.1
		LiPF ₆	-2.9	-2.9	LiPF ₆	-3.8	-3.8
		LiDCA	0.8	0.8	Lidca	0.5	0.4
CCSD(T)/VTZ	CHCl₃		-4.0	-1.7	NaBF ₄	-5.6	-5.6
		$LiPF_6$ (Conf1)	-6.9	-5.1		-5.9	-6.0
		$LiPF_6$ (Conf2)	-10.0	-8.0	NaDCA	0.2	0.0
			0.5	2.6		2 5	2.6
	DIVISO		-5./	-4.0		-3.5	-3.6
			-6.9	-5.1 1 2		-7.2	-7.2
			-0.6	1.2		-0.5	-0.0
MP2/AV12	CHCl₃		0.3	0.3		-2.1	-2.1
		$LiPF_6$ (Conf1)	-2.2	-2.2		-1.9	-1.9
		LIPF ₆ (Cont2)	-5.1 2.1	-5.1	Nadca	2.3	2.2
			3.⊥ 17	3.⊥ 1 7		0.2	0.2
	021010		-1./	-1./		-U.3 2 4	-U.3
			-3.0 2.2	-3.0 2.2		-3.4 1 E	-3.4 1 E
		LIDCA	2.3	2.3	Nadca	1.5	1.5

MP2/VTZ	CHCl₃	LiBF ₄	-3.5	-3.5	$NaBF_4$	-5.4	-5.4
		LiPF ₆ (Conf1)	-6.7	-6.7	NaPF ₆	-5.9	-5.9
		LiPF ₆ (Conf2)	10.0	10.0	NaDCA	1.0	0.9
		LiDCA	1.8	1.8			
	DMSO	LiBF ₄	-5.5	-5.5	$NaBF_4$	-3.3	-3.4
		LiPF ₆	-7.8	-7.8	NaPF ₆	-7.2	-7.3
		Lidca	0.5	0.5	NaDCA	1.0	0.9

 Table S5. Net charge transfers of LiFSI and NaFSI

Gas phase				CHCl ₃			DMSO		
LiFSI	Conf1	Conf2	Conf3	Conf1	Conf2	Conf3	Conf1	Conf2	Conf3
	0.14	0.13	0.14	0.12	0.11	0.12	0.11	0.10	0.12
NaFSI	Conf1	Con2	Conf3	Conf1	Con2	Conf3	Conf1	Con2	Conf3
	0.10	0.06	0.12	0.06	0.07	0.10	0.05	0.06	0.09

Table S6. Net charge transfers of MX (where M = Li or Na and $X = BF_4$, PF_6 and DCA)

Gas phase				CHCl₃				DMSO		
LiBF ₄	LiPF6	LiPF ₆	LiDCA	$LiBF_4$	LiPF ₆	LiPF ₆	Lidca	$LiBF_4$	$LiPF_6$	Lidca
	(Conf1)	(Conf2)			(Conf1)	(Conf2)				
0.17	014	0.16	0.28	0.13	0.11	0.12	0.08	0.17	0.10	0.09
 $NaBF_4$	$NaPF_6$	NaDCA	NaDCA	$NaBF_4$	$NaPF_6$			$NaBF_4$	$NaPF_6$	NaDCA
 0.11	0.10	0.19	0.06	0.10	0.08			0.08	0.08	0.06

Ionic liquids	LiNTf ₂	LiNTf ₂	LiPF ₆	NaPF ₆	LiBF ₄	NaBF ₄
[C₃mpyr][NTf₂]	2.16 M	0.64 M	0.94 M	< 0.1 M	1.63 M	< 0.1 M
[C₃mpyr][FSI]	4.75 M	0.91 M	0.89 M	< 0.1 M	0.60 M	< 0.1 M
[C ₁₀₁ mpyr][NTf ₂]	3.05 M	0.84 M	1.37 M	< 0.1 M	0.84 M	< 0.1 M
[C ₁₀₁ mpyr][FSI]	5.48 M	1.74 M	1.09M	0.11 M	1.64 M	< 0.1 M
[C ₂ mim][NTf ₂]	3.56 M	0.84 M	1.64 M	0.12 M	2.05 M	< 0.1 M
[C₂mim][FSI]	5.99 M	1.61 M	0.90 M	0.12 M	2.57 M	< 0.1 M

Table S7. Solubility (in M) of LiX and NaX salts in six ionic liquids.

Table S8. Correlation interaction energy (E_{int}^{corr} in kJ/mol) of MX (where M=Li and Na, X=FSI, BF₄, PF₆ and DCA) with CCSDT and MP2 methods

lon pair	CCSD(T)/AVTZ ^a	MP2/CBS1 ^b	MP2/CBS2 ^c
LiFSI	5.8	10.8	
LiBF ₄	2.5	-4.2	-3.5
LiPF ₆	4.0	-4.6	
Lidca	0.8	1.0	1.0
NaFSI	4.0	5.1	
NaBF ₄	-1.0	-1.3	-2.8
NaPF ₆	-3.8	-4.1	
NaDCA	-0.5	0.5	-0.8

^a Full-core the Li/Na cation and frozen core for the FSI anion. ^b Extrapolation of cc-pVTZ and cc-VQZ basis sets

^c Extrapolation of aug-cc-pVTZ and aug-cc-VQZ basis sets

Table S9. Correlation interaction energy (E_{int}^{corr} in kJ/mol) of MX (where M=Li and Na, X=F and C) with CCSDT and MP2 methods.^a

lon pair	Methods	Basis sets	E ^{corr} int	Methods	Basis set	E ^{corr} int
LiF	CCDS(T)	ATZ	0.5	MP2	ATZ	2.0
		AQZ	-5.7		AQZ	-3.2
		QZ	-7.0		QZ	-4.6
		5Z	-10.5		5Z	-8.1
LiCl	CCDS(T)	ATZ	-1.4	MP2	ATZ	-0.3
		AQZ	-3.4		AQZ	-1.9
		QZ	-5.3		QZ	-4.0
		5Z	-5.7		5Z	-4.3
NaF	CCDS(T)	ATZ	1.5	MP2	ATZ	2.5
		AQZ	-3.8		AQZ	-2.1
		QZ	-3.5		QZ	-2.0
		5Z	-11.2		5Z	-9.3
NaCl	CCDS(T)	ATZ	-1.2	MP2	ATZ	-0.4
		AQZ	-2.9		AQZ	-1.7
		QZ	-4.0		QZ	-3.0
		5Z	-7.0		5Z	-5.6

^a ATZ = aug-cc-pVTZ, AQZ = aug-cc-pVQZ, QZ = cc-pVQZ, 5Z = cc-pV5Z.