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Wako-Saitô-Muñoz-Eaton (WSME) Model The WSME model is an Ising-like 

statistical-mechanical model,1, 2 where a residue is assumed to sample only two 

conformational states: folded (residue with the native ϕ and ψ angles, as defined in the 

PDB file; denoted by 1) and unfolded (residue in the non-native dihedral space; 

denoted by 0). The binary treatment of the conformational status of residues results in 

an ensemble of 2N microstates for a N-residue protein. The conformational 

heterogeneity in the non-native state of a residue (as ΩU/ΩF ≫ 1, where Ω is the 

multiplicity) is accounted for by the fundamental parameter, the entropic cost ∆Sconf. 

The total partition function (Z) for the ensemble of 2N microstates can be calculated as 

described before.1,3,4 However, enumerating the free energies of all possible 

microstates is not computationally tractable and defeats a major goal of the study – to 

make the approach scalable. 

Here, we resort to model approximations, where the number of nucleation sites is 

restricted to one (single sequence approximation; SSA) and two (double sequence 

approximation DSA).2,4 In DSA, the two islands of folded residues are not allowed to 

interact. In the DSAw/L approximation, interaction between the any two native 

islands is allowed provided they interact in the native state.4,5 The total partition 

function (Z) can be obtained by accumulating the statistical weight of microstates (

). The free energy of a microstate (m, n), (i.e., microstate with wi  exp(Fi / RT )

structured residues between and including m and n) is defined as,
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The effective stabilization free energy contribution is the sum of van der Waals 

interactions ( ), electrostatic potential ( ) and solvation free energy EvdW Eelec

( )6:Gsolv

,
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The effective strength of van der Waals (vdW) interactions between heavy atom pairs 

is estimated by assigning a distance cut-off (rcut) and hence,

,
,

vdW i j
m n

E  

where ρ = 1 if rij ≤ rcut and ρ = 0 otherwise, and ξ is the interaction energy per native 

contact.

A simplified Debye-Hückel (DH) formalism is employed to quantify the electrostatic 

interaction energy between charged residues6,7:
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where KCoulomb is the Coulomb constant (1389 kJ.Å.mol-1), qi and qj are the charges on 

ith and jth atoms and rij is the distance between them, εeff  is the effective dielectric 

constant and 1/κ  is the Debye screening length, which is a function of εeff, solvent 

ionic-strength (I) and temperature (T).

The solvation free energy scales with the number of formed contacts with  Cp
cont

being the proportionality constant6,8:

, [( ) ln( )]m n cont
solv cont p ref refG x C T T T T T    
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where, is the number of native contacts within the microstate, is xcont
m,n Cp

cont

temperature-independent heat capacity change per native contact and at a reference 

temperature (Tref ) of 385 K.9,10

Estimating experimental observables The excess heat capacity is obtained from the 

total partition function (Z) as,

2
2

2

ln ln2ex
p

Z ZC RT RT
T T

           

The overall probability of a particular residue to be folded is calculated as,

1 exp( / )i kk
Z F RT  

where, ∆Fk is the free energy associated with the microstate k at temperature T, R is 

the gas constant and k runs over all the microstates in which the residue i is structured. 

The unfolding curves of the protein segments are obtained by averaging the individual 

residue folding probabilities of the constituent residues ( ). i T

Markov Clustering (MCL) Clusters in a network are characterized by the presence 

of many edges between nodes within that cluster, and fewer edges between nodes 

across clusters. Given these typical structures of clusters in a network, consider 

simulating a random walk starting from arbitrary node in the network. Since the 

probability of transitioning to a node within the same cluster as that of the staring 

node is far higher, it is very likely that the random walk would be visiting nodes 

within the cluster than those outside. Thus, in initial iterations of the random walk, the 

probability mass accumulates among nodes belonging to the cluster of the starting 

node. However, after large number of iterations, this effect disappears as the random 

walk eventually escapes outside the cluster and the flow distributes among other 

nodes. 

MCL utilizes the correspondence explained above between random walks and its 

ability to identify clusters. First, the network is encoded in the form of a transition 

matrix M. In this matrix cell  represents the number of times a transition has ijM
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happened from state i to state j in the transition paths of our simulated folding 

trajectories. Next, we add a self-loop to each node with a weight 1, i.e. . i, M i , j  1

Self-loops make the Markov chain on M aperiodic. Finally, we turn M into a row-

stochastic transition matrix by dividing each value in row i with , where n is 1
n
j ijM

the number of states in the network.

The MCL algorithm simulates random walks within a graph by alternation of two 

operators called expansion and inflation. Expansion involves taking the power of the 

transition matrix M using the normal matrix product (i.e. matrix squaring); more 

simply,  is the flow after t iterations of the random walk. t is called the expansion tM

parameter in MCL. To avoid escaping outside the cluster MCL performs inflation, 

which essentially stops the random walk after t iterations and boosts the strong 

transitions in further and demoting the weak transitions. Mathematically, this is tM

achieved by taking the Hadamard power of  (taking powers entry-wise) with tM

inflation factor r, followed by a scaling step, such that the resulting matrix is row-

stochastic again, i.e. the matrix elements (on each row) correspond to probability 

values. More specifically, 

  inflation .1( , ) ( ) ( )t t r n t r
ij ij j ijM r M M 

Here  represents the flow from state i to j after t iterations. The inflation parameter t
ijM

r controls the extent to which strong transitions are strengthened and weak transitions 

are weakened thus influencing the granularity of clusters.

MCL alternates between expansion and inflation repeatedly till convergence of the 

transition matrix. The expansion operator is responsible for the random walk to reach 

different regions of the graph and the inflation operator limits flow across clusters. 

Convergence happens in the form of a doubly idempotent matrix, i.e. a matrix that 

does not change with further expansion or inflation steps. The graph associated with 

such a matrix consists of different connected and directed components. Each 

component is interpreted as a cluster, and has a star-like form, with few attractor 

nodes in the center and edges going from all nodes of that component to the attractor. 

Mathematically, attractor nodes in the converged matrix have at least one positive 

S4



transition flow in their corresponding column. Each attractor attracts all nodes with 

positive values in its column. Clusters are identified by grouping attractor nodes and 

all nodes with positive values in their columns. Multiple attractors in a cluster are 

possible, but they do not change the interpretation of the cluster.

Calculation of End-to-End Distances For every microstate (node) in a cluster, the 

ordered and disordered regions are identified based on the sequence of 1s and 0s and 

the node type (SSA, DSA or DSAw/L). For example, in a node of type DSA with 

sequence 00111011100 (see cartoon a below), the region spanning residues 3 to 5 and 

residues 7 to 9 constitute ordered regions (cartoon b) whereas for the same sequence 

of type DSAw/L the residues spanning 3 to 9 constitute ordered region as the two 

structured islands interact with each other (cartoon c).

The end-to-end distance of the ordered region (ro) comprising of residues from 

position i to j is calculated from the PDB coordinates (i.e. the distance between the 

amide nitrogen of ith residue and the amide nitrogen of the (j+1)th residue), whereas 

the end-to end distance of the disordered regions (rd) are approximated to a linearly 

stretched polymer as described below,

,

j
d

i j k
k i

r l




where the left hand side corresponds to the distance between residues i and j, lk is the 

length of the kth residue and is calculated as the distance between amide nitrogen of kth 

residue and the amide nitrogen of (k+1)th residue. The end-to-end distance (r) of the 

microstate is calculated as
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o d

i j
r r r  

Here, i and j run over all the ordered and disordered regions, respectively, of the 

microstate of interest. The effective r of the cluster k ( ) is then obtained from
k

r

i ik
r p r

where i runs over all the microstates constituting the cluster k, pi and ri are the 

probability and end-to-end distance of the microstate i, respectively. The error 

associated with the end-to-end distance of a cluster k is calculated as

   2k i i k
r p r r  

The end-to-end distance based on the freely-jointed chain (FJC) model is obtained 

following the similar methodology except for the calculation of rd. In FJC model, the 

end-to-end distance of disordered region is approximated as

, 2 | |d
i j pr l b i j 

where the left hand side corresponds to the mean distance between residues i and j, lp 

is the persistence length (fixed to 4 Å ) and b is the bond-length (fixed to 3.8 Å).

Visualization of Folding Networks at the Level of Microstates All nodes from the 

original folding trajectories are partitioned into 10 equal sized bins based on the 

number of structured residues (n). The nodes in each bin are sorted in descending 

order based on their frequency in 10000 trajectories, where the frequency is defined 

as the number of trajectories in which the node occurs. The top 100 nodes are selected 

from each bin as representative nodes to construct the network. The representative set 

of 1000 nodes from all 10 bins accounts for about 25-50% of the original nodes 

comprising the protein-folding network. The construction and visualization of the 

network are performed using Gephi stand-alone package. The edge weights between 

two nodes in that direction can be written as,

EdgeWeight(n1  n2 )  log10(TransitionFrequency n1  n2direction)

The edges with weight less than ~2 (0-4 depending on the protein) are removed for 

the clarity of visualization. We use a built-in force minimization algorithm 

(ForceAtlas2) to reorient the nodes. The algorithm attracts nodes with force (Fa) 
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proportional to the edge weight, repulses the nodes with force (Fr) proportional to the 

product of the degrees (degree is a measure of the total number of edges from the 

given node to any other node) and prevents the isolated nodes (i.e. nodes with very 

low edge weights) from drifting away with force (Fg) proportional to the degree. 

1 2 1 2( , ) ( , )aF n n d n n

1 2 1 2 1 2( , ) (deg( ) 1) (deg( ) 1) ( , )r rF n n k n n d n n    

( ) (deg( ) 1)g gF n k n  

Here, d(n1, n2) is the distance between two nodes, which is equal to the edge weight. 

kr and kg are the proportionality constants. All other parameters are set to their default 

values except the edge weights that are scaled 1.3 times the original value to 

emphasize the weight effects. The proportionality constant for Fg was fixed to 0.08 

and the network was minimized allowing overlap of nodes.
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Figure S1. The interconnectivity of microstates exemplified here with a 5-residue 
sequence in the variant of the WSME model that allows for up to two structured 
islands (two stretches of 1s). The color of the arrows indicates the residue that is 
flipped. 
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Figure S2. Flowchart highlighting the series of steps involved in the construction of 
the folding network from secondary-structure based approach or from Markov 
clustering (MCL). 
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Figure S3.  Plot of the norm of the error matrix as a function of the number of 
iterations in the Markov clustering procedure at 298 K (blue) and Tm (red). 
Specifically, let M* be the final converged transition matrix and let Mt be the 
transition matrix after t iterations. The ordinate plots the max-norm of the error matrix 
E=M*-Mt as the number of iterations, t, is varied. The max-norm of the error matrix E 
is the largest absolute value of all elements within E. As expected, the convergence is 
fast. Theoretically, the norm is expected to decrease quadratically.
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Figure S4. Calculated kinetic relaxation profiles for the 5 proteins at the indicated 
conditions. Note that gpW exhibits bi-exponential folding relaxation at 342 K 
(continuous red in panel b).
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Figure S5. The secondary-structured based folding network at the midpoint 
conditions for WW domain (panel a), SH3 (panel b), gpW (panel c), PDD (panel d) 
and TmCspB (panel e). Thicker arrows represent higher flux paths. 
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Figure S6. Structural features of clusters identified by the Markov clustering method 
(MCL) for the WW domain. The clusters are numbered from 0 to 4 with 0 
corresponding to the folded state (sink) and 4 representing the fully unfolded state 
(source). The shaded regions highlight the secondary structure elements (beta 
strands). 
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Figure S7. Same as Figure S6, but for SH3.
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Figure S8. Same as Figure S6, but for gpW. The cyan shades represent alpha-helices.
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Figure S9. Same as Figure S8, but for PDD. Note that the ‘folded’ state (cluster 0) is 
more unfolded at 322 K compared to 298 K indicative of fraying of the helices. This 
is also evident in gpW and WW, but not obvious in SH3 or CspB. 
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Figure S10. Same as Figure S6, but for CspB from Thermotoga maritima. Note that 
the fully unfolded state (i.e. a residue folding probability of ~0 across all residues) is 
never populated in our method and hence only 6 clusters are predicted.
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Figure S11. Panels a-e provide a simple visualization of the complex folding network 
of WW (panel a), SH3 (panel b), gpW (panel c), PDD (panel d) and CspB (panel e) at 
their respective melting temperatures. U represents the fully unfolded state. The size 
of the nodes is proportional to the number of structured residues and the color 
highlights microstate free energy in the spectral scale (blue to red represents the 
linearly increasing free energy value in kJ mol-1). The edges are colored based on the 
color of the source node. The graph is organized such that the most unfolded and 
folded microstates are close to the extreme left and right, respectively. Structural 
features of some representative paths are displayed as cartoons; the gray colored 
regions represent unfolded residues while colored regions represent folded residues. 
Note the folded and unfolded ensembles have similar free energy for WW, SH3 and 
CspB (collection of bluish microstates to both the left and right of the graphs) as 
expected for midpoint conditions. The gpW and PDD folding networks are more 
complex because a large number of microstates have similar free energies at the 
midpoint. This can also be observed from the flat free-energy profiles of gpW and 
PDD at midpoint conditions in Figure 1 of the main text.

S18



Supporting Table T1. Details on Proteins, WSME Model Parameters and Simulation 
Conditions.

Protein WW SH3 gpW PDD CspB**

PDB 1I5H 1SHG 1HYW 2PDD 1CSP/1G6P
Molecular 

Weight (Da) 5720 6686 6976 4642 7365

Secondary 
Structure β Β α/β Α β

Heavy-Atom 
Interaction Cut-

off (Å)
5 6 5 5 6

Number of 
Nearest 

Neighbors 
Excluded

0 1 0 0 1

ξ
(J mol-1 per 
contact)*

-146.0 -53.0 -135.5 -112.5 -70.3

cont
pC

(J mol-1 K-1 per 
contact)

-0.35 -0.30 -0.35 0 -0.25

ΔSconf,o
(J mol-1 K-1 per 

residue)
-26.0 -14.2 -21.0 -18.5 -14.5

Ionic Strength 
(mM) 43 10 43 43 100/160

Total Number 
of Microstates 59823 821251 738189 250906 1493450

MC Simulation 
Temperatures 

(K)
298 334 298 340 298 342 298 322 298 376

<Trajectory 
Length>

(MC steps)
1170 5864 46232 732736 1644 16444 1220 2374 28901 11730518

<TP Length>
(MC Steps) 277 175 1520 1914 880 880 220 104 9461 9451

*The C-C vdW interaction energies at 5 and 6 Å from the Amber force field are, -128.2 and 
-46.1 J mol-1, respectively. The model estimates are of the same order as these atomic-level 
parameters.
**The experimental heat capacity profile of only Bacillus subtilis CspB (mesophile; PDB id: 
1CSP) is available. Therefore, the model was employed to first fit the BsCspB DSC curve and 
the heat capacity profile of hyperthermophilic CspB was predicted employing identical 
parameters but with the input structure of Thermotoga maritima CspB (PDB id: 1G6P). The 
TmCspB heat capacity profile was predicted at an ionic strength of 160 mM mimicking 
experimental single molecule conditions.
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Supporting Table T2. Cut-off Values Used to Delineate the Transition Paths on the 
Reaction Coordinate (n, number of structured residues).

@ 298K @ TmProtein Unfolded (nu) Folded (nf) Unfolded (nu) Folded (nf)
WW 8 24 8 20
SH3 14 50 14 50
gpW 14 46 19 46
PDD 11 25 10 20
CspB 16 55 16 55
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Supporting Table T3. Mutants that are off the experimental trend in Figure 3 of the 
main text.

Protein Residue Index Mutation
10 S10G
11 G11A
12 R12A/R12HWW

26 E26A/E23Q
24 D24A
36 W36ASH3
38 K38A
1 V1A
2 I2A/I2G
3 A3G
35 I35V
37 A37G

PDD

39 L39A
10 N10A
15 F15A
17 F17ACspB

19 E19A
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Supporting Table T4. Top 10 Folding Paths in the Secondary Structure Based 
Network.

WW at 298 K WW at 334 K
Path Flux (%) Path Flux (%)

β2→β1→β3 43.0 β2→β1→β3 46.9
β1→β2→β3 27.6 β1→β2→β3 27.7
β2→β3→β1 20.8 β2→β3→β1 20.6
β3→β2→β1 6.0 β1→β3→β2 2.2
β1→β3→β2 1.6 β3→β2→β1 1.9
β3→β1→β2 1.0 β3→β1→β2 0.7

SH3 at 298 K SH3 at 340 K
Path Flux (%) Path Flux (%)

β3→β4→β2→β1→β5 54.2 β3→β4→β2→β1→β5 52.2
β4→β3→β2→β1→β5 12.7 β4→β3→β2→β1→β5 14.0
β3→β4→β1→β2→β5 8.4 β3→β4→β1→β2→β5 9.5
β3→β4→β2→β5→β1 6.2 β3→β4→β2→β5→β1 5.5
β3→β4→β1→β5→β2 3.9 β3→β4→β1→β5→β2 4.8
β3→β4→β5→β2→β1 3.6 β4→β3→β1→β2→β5 2.6
β3→β4→β5→β1→β2 2.7 β3→β4→β5→β1→β2 2.5
β4→β3→β1→β2→β5 2.6 β3→β4→β5→β2→β1 2.0
β4→β3→β2→β5→β1 1.5 β3→β2→β4→β1→β5 1.8
β3→β2→β4→β1→β5 1.2 β4→β3→β1→β5→β2 1.4

gpW at 298 K gpW at 342 K
Path Flux (%) Path Flux (%)

α2→β2→α1→β1 19.3 β2→α2→α1→β1 23.3
α1→α2→β2→β1 16.3 α2→β2→α1→β1 16.7
α2→α1→β2→β1 14.3 α1→α2→β2→β1 16.0
β2→α2→α1→β1 9.5 β2→α1→α2→β1 7.7
α1→β2→β1→α2 8.8 α2→α1→β2→β1 7.2
α2→β2→β1→α1 5.5 α1→β2→α2→β1 4.9
α1→β1→β2→α2 5.4 α1→α2→β1→β2 4.7
α1→β2→α2→β1 5.2 β2→α2→β1→α1 4.0
α1→α2→β1→β2 3.7 α1→β2→β1→α2 2.8
α2→α1→β1→β2 2.7 α2→β2→β1→α1 2.4

S22



Supporting Table T4 (Contd.). Top 10 Folding Paths in the Secondary Structure 
Based Network.

PDD at 298K PDD at 322K
Path Flux (%) Path Flux (%)

α1→α3→α2 21.49 α1→α3→α2 31.19
α2→α3→α1 19.98 α3→α2→α1 17.42
α2→α1→α3 18.70 α2→α3→α1 16.34
α1→α2→α3 17.56 α2→α1→α3 15.00
α3→α2→α1 12.46 α1→α2→α3 12.65
α3→α1→α2 9.81 α3→α1→α2 7.40

CspB at 298K CspB at 376K
Path Flux (%) Path Flux (%)

β2→β3→β1→β4→β5 32.86 β2→β1→β3→β5→β4 26.34
β2→β1→β3→β4→β5 19.62 β2→β1→β3→β4→β5 26.27
β2→β3→β1→β5→β4 18.05 β2→β3→β1→β5→β4 15.42
β2→β1→β3→β5→β4 10.77 β2→β3→β1→β4→β5 15.11
β1→β2→β3→β4→β5 5.89 β1→β2→β3→β5→β4 6.22
β3→β2→β1→β4→β5 5.70 β1→β2→β3→β4→β5 6.02
β1→β2→β3→β5→β4 3.19 β3→β2→β1→β5→β4 2.05
β3→β2→β1→β5→β4 3.13 β3→β2→β1→β4→β5 1.87
β1→β3→β2→β4→β5 0.20 β2→β1→β4→β3→β5 0.25
β3→β1→β2→β4→β5 0.15 β2→β3→β5→β1→β4 0.10
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Supporting Table T5. Top 10 Folding Paths Through the MCL Method.* 

WW at 298 K WW at 334 K
Path Flux (%) Path Flux (%)

4→1→0 39.8 4→2→0 28.9
4→2→0 23.2 4→1→0 26.1

4→3→1→0 14.4 4→3→1→0 16.0
4→3→2→0 10.3 4→3→2→0 13.3

4→1→3→2→0 2.5 4→2→3→1→0 4.0
4→0 1.9 4→1→3→2→0 3.9

4→2→3→1→0 1.9 4→1→3→0 1.4
4→1→3→0 1.5 4→2→3→0 1.4
4→2→3→0 1.5 4→3→0 1.4

4→3→0 1.5 4→0 1.3

SH3 at 298 K SH3 at 340 K
Path Flux (%) Path Flux (%)
6→0 13.0 6→1→0 11.8

6→5→2→1→0 10.9 6→1→2→3→0 7.1
6→5→2→1→4→3→0 10.9 6→2→3→0 6.0

6→2→1→0 7.3 6→2→1→0 5.5
6→2→1→4→3→0 7.3 6→4→2→1→0 5.4

6→1→0 5.9 6→4→2→3→0 5.4
6→1→4→3→0 5.9 6→1→3→0 4.0

6→1→4→0 5.4 6→2→1→3→0 4.0
6→2→1→4→0 5.4 6→4→2→1→3→0 4.0

6→5→2→1→4→0 5.4 6→5→1→0 3.6

gpW at 298 K gpW at 342 K
Path Flux (%) Path Flux (%)
8→0 21.2 6→0 16.5

8→3→0 10.1 6→1→0 8.0
8→1→0 9.7 6→1→3→0 5.1
8→4→0 4.9 6→1→2→0 5.0
8→6→0 4.1 6→2→0 4.4

8→3→2→0 3.8 6→3→0 3.8
8→5→2→0 3.6 6→3→1→0 2.9

8→2→0 2.9 6→3→1→2→0 2.9
8→1→6→0 2.5 6→1→2→4→0 2.5
8→4→7→0 2.4 6→2→4→0 2.5

* Note that the structural features of the clusters differ between temperatures. See 
Figures S6-S8.
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Supporting Table T5 (Contd.). Top 10 Folding Paths Through the MCL Method.* 

PDD at 298K PDD at 322K
Path Flux (%) Path Flux (%)

4→2→1→0 16.9 4→3→2→0 16.4
4→3→2→1→0 16.3 4→3→1→2→0 16.4

4→0 12.6 4→3→1→0 11.8
4→2→0 10.3 4→3→2→1→0 11.8

4→3→2→0 10.3 4→2→0 10.8
4→3→1→0 9.3 4→2→1→0 10.8

4→3→1→2→0 9.3 4→3→0 5.3
4→3→0 5.4 4→2→3→0 3.6
4→1→0 1.9 4→2→3→1→0 3.6

4→1→2→0 1.9 4→2→1→3→0 2.0

CspB at 298K CspB at 376K
Path Flux (%) Path Flux (%)

5→3→2→1→0 56.0 5→4→3→2→1→0 41.9
5→4→3→2→1→0 12.3 5→3→2→1→0 38.8

5→4→2→1→0 7.4 5→2→1→0 11.6
5→3→4→2→1→0 7.4 5→4→1→0 1.1

5→2→1→0 7.0 5→3→4→1→0 1.1
5→2→0 1.4 5→2→3→4→1→0 1.1

5→4→2→0 1.4 5→3→1→0 0.8
5→3→2→0 1.4 5→4→3→1→0 0.8

5→4→3→2→0 1.4 5→2→3→1→0 0.8
5→3→4→2→0 1.4 5→1→0 0.3

* Note that the structural features of the clusters differ between temperatures. See 
Figures S9-S10.
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Supporting Movies 1-10. Each of the 10 movies present a visual representation of 
the top 5 folding paths (starting from the fully unfolded state) generated from the MC 
simulation and as identified from the secondary-structure based network analysis at 
298 K and at the respective midpoint temperatures (Tm). The unfolded segments are 
represented in gray while the fully folded structure is color coded from blue (N-
terminal) to red (C-terminal). 
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