Supporting Information for:

Conformer specific nonadiabatic reaction dynamics in photodissociation of partially deuterated thioanisoles (C₆H₅S-CH₂D and C₆H₅S-CHD₂)

So-Yeon Kim^{+a}, Jeongmook Lee^{+b} and Sang Kyu Kim^{a*}

^aDepartment of chemistry, KAIST, Daejeon 305-701, Republic of Korea. *E-mail: <u>sangkyukim@kaist.ac.kr</u> †contributed equally to this work ^bNuclear Chemistry Research Division, Korea Atomic Energy Research Institute, Daejeon 305- 353, Korea

Contents

- 1. Calculated molecular structural parameters and energetics for S₀, S₁, D₀ minima and MECI.
- 2. Assignments of SEVI spectra obtained via v_S or 7a levels for TA-d₁/d₂.
- 3. Experimental and calculated vibrational frequencies of S_0 and D_0 minima for TA-h₃/d₃/d₁/d₂.
- 4. Total translational energy distributions in VMI images obtained via v_S or 7a levels for TA-d₁/d₂.
- 5. Calculated density of states on S_1 state for TA-d₁/d₂.
- 6. Additional quantum chemical calculations for S_1/S_2 crossing (seam) points on v_s and 7a normal coordinate.

Table S1. Calculated molecular structural parameters and energetics for the ground (S₀), first excited (S₁), cationic ground (D_0) states, and S_1/S_2 MECI for thioanisole. The positions of D atom(s) are presented for each isotopomers.

3 2 4		A1	B1	A2	B2
		Ec	quilibrium		S./S. MECI
	\mathbf{S}_0	S ₁ ^a (adiabatic)	S ₁ (vertical)	D_0	$\mathbf{S}_1/\mathbf{S}_2$ wieci
Relative E.	-	+37 134	+38 794	+55 098	+39 751
/ (cm ⁻¹)	(-)	(+35 091)°	(+36 467) ^c	(+61 634) ^c	(+38 817) ^c
d(S-Me) / (Å)	1.86	1.87	-	1.87	2.13
d(C-SMe) / (Å)	1.82	1.79	-	1.72	1.78
$\gamma(H_{(3)}\text{-}C_{(2)}\text{-}S) \ / \ (°)$	105.02	104.91	-	104.30	101.24
$\gamma(C_{(2)}\text{-}S\text{-}C_{(1)}) \ / \ (^{\circ})$	102.34	103.13	-	106.13	102.63
$d(\text{C-C})^b /(\text{\AA})$	1.40	1.43	-	1.40	1.42

^a imaginary frequency with ring and –SMe torsional mode
 ^b averaged values for the phenyl moiety
 ^c The values in parentheses are obtained with CASPT2 correction.

TA-d ₁ -A1	Ion internal energy (cm ⁻¹)	Assignment
	666	vs ¹
	775	$15^{1}6b^{1}/\tau^{4}6a^{1}$
Via v_{s} (659 cm ⁻¹ on S ₁)	802	$15^{2}6a^{1}/\tau CH3^{1}\nu_{S}^{-1}$
	835	$\tau CH3^{2}16a^{1}15^{1}/\tau^{2}\tau CH3^{2}16a^{1}$
	898	$\tau^{1}CH_{3}{}^{1}\nu_{s}{}^{1}\!/\tau^{2}\tau CH_{3}{}^{1}\!6b^{1}$
	663	ν_{S}^{1}
	693	$\tau^4\beta s^{1/}\tau^36a^1$
Via 7a $(712 \text{ cm}^{-1} \text{ on } S_1)$	727	7a ¹
(/12 011 01 01 01)	757	$\tau^1 \nu_S {}^1/\beta s^1 6a^1$
	784	$15^{1}6b^{1}/\tau^{4}6a^{1}$

TABLE S2. Assignments of vibrational frequencies of TA- d_1 -A1 in the cationic state (D₀) appeared in (1+1') SEVI spectra shown in Fig. 6 (a), (b).

TABLE S3. Assignments of vibrational frequencies of TA- d_1 -B1 in the cationic state (D₀) appeared in (1+1') SEVI spectra shown in Fig. 6 (c), (d).

TA-d ₁ -B1	Ion internal energy (cm ⁻¹)	Assignment
	680	v_{s}^{1}
	763	$\tau^{1}\nu_{S}{}^{1}\!/15^{1}6b^{1}$
	847	$6a^2$
Via v_s (678 cm ⁻¹ on S_1)	895	$\tau^{2}\tau CH3^{1}6b^{1/}\tau^{2}\tau CH3^{1}\nu_{S}^{1}$
	921	$15^{1}16a^{2}/\beta s^{1}6b^{1}$
	979	121
	998	$\tau^{1} \ \tau CH3^{1}15^{1}6b^{1\!/} \ \tau^{3}16a^{2}$
	685	v_{s}^{1}
Vie 7e	719	$7a^1$
$(708 \text{ cm}^{-1} \text{ on } \text{S}_1)$	745	$\begin{array}{l} \tau^{1}\tau CH3^{1}15^{1}\beta s^{1/}\ \tau CH3^{1}15^{1}6a^{1}\\ or \tau^{1}\nu s^{1/}\ \beta s^{1}6a^{1}\ of\ TA-d_{1}-A1 \end{array}$
	772	$\tau^{1}\nu_{S}$ $^{1}/15^{1}6b^{1}$

TA-d ₁ -A2	Ion internal energy (cm ⁻¹)	Assignment
	682	ν_{s} ¹
Via vs	752	$\beta s^1 6a^1$
$(676 \text{ cm}^{-1} \text{ on } S_1)$	775	$\tau^{1}\nu_{s}$ $^{1}/15^{1}6b^{1}$
	844	$6a^2/15^1\beta s^2$
	659	βs^2
Via 7a	725	$7a^1$
$(707 \text{ cm}^{-1} \text{ on } S_1)$	758	$\beta s^1 6a^1$
	835	$\tau^2\beta s^1/15^1\beta s^2$

TABLE S4. Assignments of vibrational frequencies of TA- d_2 -A2 in the cationic state (D₀) appeared in (1+1') SEVI spectra shown in Fig. 7 (a), (b).

TABLE S5. Assignments of vibrational frequencies of TA- d_2 -B2 in the cationic state (D₀) appeared in (1+1') SEVI spectra shown in Fig. 7 (c), (d).

TA-d ₁ -B2	Ion internal energy (cm ⁻¹)	Assignment
Via v_{s} (658 cm ⁻¹ on S ₁)	665	v_{s}^{1}
	663	vs ¹
Via 7a $(706 \text{ cm}^{-1} \text{ on } S_1)$	718	7a ¹
	754	$\tau^1\nu_S{}^1\!/\beta s^16a^1$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	PI MATI 87
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	87
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	87
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	101
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	184
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\beta_{\rm s}$ a' $\frac{333}{(330)} \frac{340}{(347)}$ 337 $\beta_{\rm s}$ a' $\frac{321}{(319)} \frac{328}{(336)}$ 32	124
$\beta_{\rm s}$ a' (330) (347) 337 $\beta_{\rm s}$ a' (319) (336) 32	
) 327
A12 383 A12 383	
16a $a'' (432) (403) = 369 = 16a = a'' (431) (403)$	
(432) (403) (403) (403) (403)	
$6a a' \frac{420}{(405)} \frac{434}{(441)} 392 426 6a a' \frac{412}{(207)} \frac{420}{(424)} 38$	423
(403) (441) (597) (434)	
16b a'' (400) (460) 16b a'' (400) (460)	
(499) (460) (499) (460)	
6b a' 631 598 524 589 $6b$ a' 630 597 52	2 590
(663) (631) (663) (630)	• / •
698 688 687 690 $v_{\rm S}$ a' 667 657 657	i 664
(616) (816) (588) (769) (588) (769)	, 004
4 a'' 700 644 4 a'' 699 644	
(716) (622) (715) (622)	
70 2' 730 734 724 722 70 2' 714 727 70	5 706
7a a (715) (736) 724 752 $7a$ a (708) (717) 70	/20
754 780 11 754 780	
11 a (765) (768) 11 a (765) (768)	
850 831 10 " 849 832	
$10a a^{\prime\prime} (864) (850) 10a a^{\prime\prime} (864) (851)$	
913 965 913 965	
17b a'' (922) (963) $17b$ a'' (922) (963)	
972 934 734 706	
$\gamma_{s}CH_{3}$ a" (1011) (999) $\gamma_{s}CD_{3}$ a" (1152) (749)	
981 991 775 778	
$\beta_{as}CH_3$ a' (1036) (1055) $\beta_{as}CD_3$ a' (808) (817) 75	5 775
(1050) (1055) (000) (017)	
17a a'' (004) (1022) 17a a'' (004) (1022)	
(994) (1023) (994) (1023)	
12 a' (1000) (1075) 956 981 12 a' (1007) (1075) 956 981	2 983
(1088) (1075) (1087) (1073)	
$5 a'' = \frac{1003}{1000} = \frac{1029}{1000} = 5 a'' = \frac{1003}{10000} = 965$	
(1007) (1031) (1009) (1031)	
1 a' 1045 1023 1 a' 1045 1022	
(1045) (1033) (1045) (1033)	
19a a' 1102 1123 19a a' 1103 1121	
(1144) (1178) (1149) (1168)	

Table S6. Experimental and calculated vibrational frequencies (cm⁻¹) of S₀ and D₀ minima for thioanisole-h₃, -d₃, -d₁-A1/B1, and -d₂-A2/B2. The frequencies are obtained from the B3LYP/6-311⁺⁺G(3df,3pd) level of calculation, whereas the values in parentheses were obtained using the SA4-CASSCF(12(11 for D₀),11)/6-311⁺⁺G(d,p) calculation.

106	o'	1107	1103		19b	o'	1107	1104
190	a	(1153)	(1162)		190	a	(1151)	(1158)
Ob	o'	1183	1192		Ob	o'	1183	1192
90	a	(1217)	(1239)		90	a	(1217)	(1239)
0.5	o/	1210	1222		0.5	o'	1210	1222
98	a	(1277)	(1288)		9a	a	(1277)	(1288)
1.4	a/	1311	1318		1.4	a/	1310	1320
14	a	(1325)	(1385)		14	a	(1324)	(1386)
RCH	o'	1349	1360		RCD	o'	1034	1030
$p_s C \Pi_3$	a	(1460)	(1497)		$\rho_{s}CD_{3}$	a	(1096)	(1186)
2	o/	1365	1372		2	o'	1357	1372
3	a	(1436)	(1439)		5	a	(1440)	(1440)
10.	o/	1467	1454		190	o'	1468	1455
10a	a	(1556)	(1549)		100	a	(1556)	(1549)
. CII	o″	1469	1460		CD	o″	1062	1054
γ _{as} CΠ ₃	a	(1590)	(1580)		$\gamma_{as}CD_3$	a	(1152)	(1144)
RCH	o'	1487	1458		RCD	o'	1075	1050
$p_s C H_2$	a	(1604)	(1576)		$\rho_{\rm s} CD_2$	a	(1164)	(1139)
196	o'	1512	1488		195	o'	1512	1487
160	a	(1614)	(1596)		160	a	(1613)	(1595)
8h	a′	1607	1546		8h	a′	1607	1546
80	a	(1667)	(1657)		00	a	(1667)	(1657)
8a	a′	1625	1605		89	a′	1625	1604
ou	u	(1723)	(1697)		0a	u	(1723)	(1696)
v CH2	a′	3040	3051		v CD2	a′	2177	2183
VsCII3	a	(3197)	(3215)		V _S CD ₃	a	(2288)	(2299)
v CH ₂	ล″	3119	3146		v CDa	ล″	2315	2334
vas CI12	u	(3294)	(3328)		VasCD2	u	(2435)	(2472)
v _{er} CH ₂	a′	3133	3154		$v_{as}CD_2$	a′	2321	2339
Vaserry	u	(3282)	(3336)		VaseD3	u	(2447)	(2479)
13	a′	3165	3191		13	a′	3165	3191
15	u	(3313)	(3345)		15	u	(3313)	(3345)
7h	a′	3172	3197		7h	a′	3172	3197
70	u	(3320)	(3353)		70	u	(3320)	(3353)
20a	a′	3182	3207		20a	a′	3182	3207
200	u	(3333)	(3362)		200	u	(3333)	(3362)
2	a′	3195	3215		2	a′	3195	3215
2	u	(3345)	(3372)		2	u	(3345)	(3372)
20h	a′	3210	3225		20b	a′	3209	3225
200	u	(3365)	(3386)		200	u	(3365)	(3386)
* Partiall	y revise	d from ou	r previous wo	ork ^{38,52}				

	Т	'hioanisol	e-d1-A1			Thioanisole-d ₁ -B1						
mode	sym.	S_0	D_0	R2PI	SEVI	mode	sym.	S_0	D_0	R2PI	SEVI	
-	o″	47	92	27	80	-	o″	47	92	26	01	
au a"	(19)	(90)	57	89	ι	a	(19)	(91)	30	91		
101		161	149			101		160	145			
100	a	(173)	(157)			100	a	(173)	(152)			
15	a'	190	185	196	188	15	a'	190	190	199	188	

		(199)	(196)					(198)	(200)		
CU	- "	210	172	65	1.40		- "	213	172	65	106
$ au CH_3$	a″	(230)	(178)	65	143	τCH_2D	a″	(232)	(177)	65	136
		331	338					328	335		
$\beta_{ m s}$	a'	(328)	(346)	330	336	$\beta_{ m s}$	a'	(325)	(342)	329	333
		(320)	383					(323)	383		
16a	a″	(422)	(402)			16a	a″	(422)	(402)		
		(432)	(405)					(432)	(403)		
6a	a'	415	428	386	423	6a	a'	419	455	388	428
		(402)	(436)					(402)	(440)		
16b	a″	485	438			16b	a″	485	438		
		(499)	(460)					(499)	(460)		
бh	a′	631	598	523	585	6h	ล'	631	958	522	58/
00	u	(663)	(631)	525	565	00	u	(663)	(631)	522	504
	o'	671	663	650			o'	694	678	678	(00)
VS	a	(594)	(791)	039	666	VS	a	(609)	(765)	078	680
4	"	700	644			4	,,	700	644		
4	a″	(716)	(622)			4	a″	(716)	(622)		
		718	733					718	727		
7a	a'	(709)	(721)	712	727	7a	a'	(714)	(731)	708	719
		754	780					754	780		
11	a″	(765)	(768)			11	a″	(765)	(768)		
		(703) 840	(700) 921					(705)	(708)		
10a	a″	049 (964)	(950)			10a	a″	030 (964)	032 (840)		
		(804)	(850)					(804)	(849)		
17b	a″	913	965			17b	a″	913	965		
		(922)	(963)					(923)	(964)		
v _c CH ₂ D	a″	952	908			ν₀CH₂D	a″	797	777		
78011222	u	(991)	(977)			7501122	u	(820)	(863)		
βCH2D	a′	840	838			B-CH2D	ล'	949	947		
$p_{as} cm_2 D$	u	(864)	(888)			$p_{as} cm_2 b$	u	(1004)	(1017)		
17.	o."	989	1015			17.	."	989	1015		
17a	a	(995)	(1023)			17a	a	(994)	(1023)		
10	,	996	980	052		10	,	996	980	052	
12	a'	(1088)	(1074)	953	982	12	a'	(1088)	(1074)	953	982
_		1003	1029			_		1003	1029		
5	a″	(1009)	(1031)			5	a″	(1009)	(1031)		
		1045	1022					1045	1023		
1	a'	(1045)	(1033)			1	a'	(1045)	(1034)		
		1102	1121					1102	1122		
19a	a'	(1144)	(1174)			19a	a'	(1144)	(1176)		
		(1144)	(1174) 1102					(11++) 1107	(1170)		
19b	a'	(1151)	(11(2))			19b	a'	(1152)	(11(2))		
		(1151)	(1102)					(1152)	(1102)		
9b	a'	1183	1192			9b	a'	1183	1192		
		(1217)	(1239)					(1217)	(1239)		
9a	a'	1209	1221			9a	a'	1210	1222		
24	u	(1276)	(1287)			24		(1277)	(1287)		
14	a′	1311	1320			14	a′	1312	1325		
14	a	(1322)	(1384)			14	a	(1323)	(1383)		
RCU.D	o'	1256	1255			RCHD	o'	1265	1255		
$\mu_{s} \subset \Pi_{2} D$	a	(1353)	(1392)			p_{s} CH ₂ D	a	(1359)	(1400)		
2	-1	1357	1372			2	- 1	1357	1372		
3	a	(1441)	(1441)			5	a	(1441)	(1441)		
		. /	. /					. /	. /		

18a	o'	1469	1455		100	o/	1469	1455	
168	a	(1556)	(1549)		188	a	(1556)	(1549)	
n CU.	o″	1277	1268		NCH.	o″	1449	1441	
γ_{s} CH ₂	a	(1377)	(1364)		γ_{s} CH ₂	a	(1571)	(1562)	
" CH.D	a'	1465	1429			o'	1291	1276	
γ _{as} CΠ ₂ D	a	(1583)	(1558)		YasCI12D	a	(1385)	(1361)	
185	a'	1512	1487		18h	o'	1512	1487	
160	a	(1613)	(1596)		160	a	(1613)	(1596)	
8h	a′	1607	1546		8h	a′	1607	1546	
00	a	(1667)	(1657)		00	a	(1667)	(1657)	
89	a′	1625	1605		89	a′	1625	1605	
0a	a	(1723)	(1697)		0a	a	(1723)	(1697)	
v CD	ล'	3063	3080		νCD	ล″	3075	3091	
vsed u	u	(3232)	(3255)		VSCD	u	(3229)	(3261)	
v _{er} CH ₂ a"	ล″	3119	3146		vasCH2	a″	3130	3153	
VasCII2	u	(3294)	(3336)				(3285)	(3330)	
v-CH	ล′	2280	2291		v-CH	ล″	2263	2277	
Vsen	u	(2381)	(2413)		Vsen	u	(2390)	(2412)	
13	ล'	3165	3191		13	a′	3165	3191	
15	u	(3313)	(3345)		15	u	(3313)	(3345)	
7h	ล'	3172	3197		7h	ล'	3172	3197	
70	a	(3320)	(3353)		70	a	(3320)	(3353)	
20a	ล'	3182	3207		20a	ล'	3182	3207	
200	u	(3333)	(3362)		200	u	(3333)	(3362)	
2	a′	3195	3215		2	a′	3195	3215	
2	a	(3345)	(3372)		L	a	(3345)	(3372)	
20h	ล'	3209	3225		20h	ล'	3209	3225	
20b	a	(3365)	(3386)		206	a	(3365)	(3386)	

* Partially revised from our previous work^{38,52}

]	Thioanisol	e-d ₂ -A2			Thioanisole-d ₂ -B2					
mode	sym.	S_0	D_0	R2PI	SEVI	mode	sym.	S_0	D_0	R2PI	SEVI
7	o″	45	90	35	00	Ŧ		45	90	36	80
ι	a	(19)	(89	35	90	ι	a	(19)	(88)		89
10b a"	o″	152	133			101	o″	151	134		
	a	(168)	(141)			100	a	(166)	(144)		
15 /	-	186	181	101	185	15	-1	185	182	102	107
15	a	(194)	(191)	191		15	a	(193)	(192)	192	187
auCHD ₂ a"	- //	199	169	<i>C</i> 1	100	CUID	- //	201	168	<i>C</i> 1	130
	a	(214)	(173)	64	128	τCHD_2	a	(216)	(171)	04	
0	-1	322	329			0	-1	326	333	326	222
$\beta_{\rm s}$	a	(320)	(337)			$\beta_{\rm s}$	a	(324)	(341)		332
16	- //	412	383			10	- //	412	383		
16a	a	(499)	(403)			16a	a	(431)	(403)		
<i>r</i>	,	417	431	207	10.5	<i>c</i>	,	413	427	205	
6a	a	(400)	(439)	386	426	6a	a	(399)	(435)	385	422
1.01		485	438			1.0		485	438		
16b	a″	(499)	(460)			16b	a″	(499)	(460)		
6b	a'	631	598	523	586	6b	a'	631	598	523	587
						1					

		(663)	(631)					(663)	(631)		
	,	691	676		<0 0		,	668	659	650	
Vs	a'	(605)	(769)	6/6	682	vs	a'	(590)	(764)	658	665
		699	644				,,	700	644		
4	a″	(715)	(622)			4	a″	(716)	(622)		
-		716	728			_	,	715	723	-	- 10
/a	a'	(714)	(730)	707	725	7a	a'	(708)	(718)	/06	718
		754	780					754	780		
11	a″	(766)	(768)			11	a″	(765)	(768)		
4.0		850	832					849	830		
10a	a″	(864)	(851)			10a	a″	(864)	(850)		
		913	965					913	965		
17b	a″	(923)	(964)			17b	a″	(923)	(963)		
		737	711					857	754		
$\gamma_{s}CD_{2}$	a″	(759)	(752)			$\gamma_{\rm s}$ CHD ₂	a″	(885)	(903)		
		846	849					764	841		
$\beta_{\rm as} {\rm CHD}_2$	a'	(891)	(933)			$\beta_{\rm as}{ m CHD}_2$	a'	(793)	(806)		
		989	1015					989	1015		
17a	a″	(994)	(1023)			17a	a″	(994)	(1023)		
		996	980					996	980		
12	a'	(1087)	(1073)	953	982	12	a'	(1087)	(1074)	953	982
		1003	1029					1003	1029		
5	a″	(1009)	(1031)			5	a″	(1009)	(1031)		
		1045	1022					1045	1022		
1	a'	(1045)	(1033)			1	a'	(1045)	(1033)		
		1102	1121					1103	1121		
19a	a'	(1140)	(1179)			19a	a'	(1150)	(1175)		
		1107	1103					1106	1104		
19b	a'	(1151)	(1165)			19b a'	a'	(1153)	(1162)		
		1183	1192					1183	1192		
9b	a'	(1217)	(1239)			9b	a'	(1217)	(1239)		
		1210	1222					1210	1222		
9a	a'	(1277)	(1288)			9a	a'	(1277)	(1287)		
		1312	1327					1310	1321		
14	a'	(1320)	(1394)			14	a'	(1323)	(1385)		
		1254	1264					1252	1239		
$\beta_{\rm s}{ m CHD}_2$	a'	(1344)	(1361)			$\beta_{\rm s}$ CHD ₂	a'	(1336)	(1359)		
		1357	1372					1357	1372		
3	a'	(1441)	(1442)			3	a'	(1442)	(1441)		
		1468	1455					1468	1455		
18a	a'	(1556)	(1549)			18a	a'	(1556)	(1549)		
		1303	1297					1051	1291		
γ_{as} CHD	a″	(1415)	(1410)			$\gamma_{\rm s}$ CHD	a″	(1130)	(1149)		
		1070	1041					1321	1048		
$\beta_{\rm s}$ CHD	a'	(1155)	(1148)			$\beta_{\rm s}$ CHD	a'	(1431)	(1409)		
		1512	1487					1512	1487		
18b	a'	(1613)	(1595)			18b	a'	(1613)	(1595)		
		1607	1546					1607	1546		
8b	a'	(1667)	(1657)			8b	a'	(1667)	(1657)		
		1625	1604					1625	1604		
8a	a'	(1723)	(1696)			8a	a'	(1723)	(1696)		
		(1,23)	(10/0)			II		(1723)	(10)0)		

$v_s CD_2$	o'	2214	2225		u CD	o."	2225	2234	
	a	(2336)	(2350)		$V_{\rm S}$ CD ₂	a	(2336)	(2356)	
vasCD ₂	o″	2315	2334		u CD	o″	2320	2338	
	a	(2447)	(2479)		$V_{\rm as}CD_2$	a	(2438)	(2474)	
vsCH	o'	3115	3132		v _s CH	a″	3092	3115	
	a	(3252)	(3296)				(3264)	(3298)	
13	o/	3165	3191		13	a'	3165	3191	
	a	(3313)	(3345)				(3313)	(3345)	
71	o'	3172	3197		75	a'	3172	3197	
70	a	(3320)	(3353)		70		(3320)	(3353)	
20.0	o'	3182	3207		20.0	a'	3182	3207	
20a	a	(3333)	(3362)		20a		(3333)	(3362)	
2	o'	3195	3215		2	o'	3195	3215	
Z	a	(3345)	(3372)		Z	d	(3345)	(3372)	
2015	o'	3209	3225		2015	o'	3209	3225	
200	a	(3365)	(3386)		200	a	(3365)	(3386)	

* Partially revised from our previous work^{38,52}

Figure S1. Dynamic resonances of the S₁ excited for TA-d₁/-d₂. Total translational energy distributions deduced from \cdot CH₂D and \cdot CHD₂ (ν =0) images obtained via the ν s and 7a levels of the S₁ excited states for (a) A1, (B) B1, (c) A2, and (d) B2. Corresponding images are given in insets with the raw images on the right and the reconstructed images on the left.

	Mode	Excitation energy (cm ⁻¹)	$\widetilde{X}/\widetilde{A}$ branching ratio	Error (±, cm ⁻¹)
	S_1 - S_0 org.	0	0.0412	0.0051
4.1	vs	687	0.1331	0.0118
AI	7a	724	0.1929	0.0119
	12	956	0.0815	0.0059
	S_1 - S_0 org.	0	0.0427	0.0075
D1	vs	656	0.1065	0.0117
B1	7a	705	0.1745	0.0110
	12	952	0.0856	0.0087
	S_1 - S_0 org.	0	0.0396	0.0051
4.2	vs	659	0.1052	0.0122
AZ	7a	712	0.1055	0.0068
	12	953	0.0767	0.0053
	S_1 - S_0 org.	0	0.0428	0.0076
D1	vs	678	0.3019	0.0173
D2	7a	708	0.1365	0.0153
	12	953	0.0797	0.0069

Table S7. \tilde{X}/\tilde{A} product branching ratio with errors obtained via S_1 - S_0 origin, v_s , 7a, and 12 for TA-d1/-d2 isotopomers. Corresponding total translational energy distributions deduced from \cdot CH₂D and \cdot CHD₂ (υ =0) images are shown in Figure S1.

FIGURE S2. Calculated density of states on S_1 state for TA-d₁-A1 (blue dot), -B1 (light blue triangle) and TA-d₂-A2 (orange rhombic), -B2 (magenta square). (a) up to 2000cm⁻¹ (b) symmetric stretching (v_s) region. The vertical dashed lines represent the v_s vibrational frequencies for each isomers. (c) asymmetric stretching (7a) region. The vertical dashed lines represent the 7a vibrational frequencies for each isomers.

FIGURE S3. Calculated potential energy profiles of the first (S₁, red) and second (S₂, blue) electronically excited states along the asymmetric stretching (v_s , left) and the symmetric stretching (7a, right) normal coordinates. SA4/CASSCF(dashed line) and CASPT2 corrected (solid line) values are calculated for thioanisole -h₃(a), -d₃(b), A1(c), B1(d), A2(e) and B2(f). S₁/S₂ crossing points are presented with green star. The geometrical parameters and energetics of each crossing point are shown in Table S7.

Table S8. Normalized cationic vibrational normal mode vectors of vs and 7a modes for TA-h₃, d₃, A1, B1, A2, and B2 isotopes corresponding to the (1.0) coordinate on x axes. Vs and 7a normal mode coordinates on S_1 and S_2 electronic states adopted in the CASSCF calculations in Fig. 5 (or Fig. S3) are developed with cationic vibrational normal modes.

h3		vs+	(736cm	n ⁻¹)	$7a^+ (816cm^{-1})$			d3		$v_{S^{+}}(717 cm^{-1})$			7a ⁺ (769cm ⁻¹)		
		X	Y	Ζ	X	Y	Ζ	4	.	X	Y	Ζ	X	Y	Ζ
1	С	-0.02	0.00	0.10	0.00	0.00	-0.03	1	С	0.02	0.00	-0.08	-0.01	0.00	0.06
2	С	0.10	0.00	-0.02	-0.04	0.00	0.01	2	С	-0.08	0.00	0.01	0.06	0.00	0.00
3	С	-0.09	0.00	-0.05	0.04	0.00	0.04	3	С	0.07	0.00	0.03	-0.06	0.00	-0.06
4	С	0.11	0.00	-0.01	-0.04	0.00	0.00	4	С	-0.08	0.00	0.01	0.07	0.00	0.00
5	С	-0.08	0.00	-0.05	0.04	0.00	0.03	5	С	0.06	0.00	0.03	-0.06	0.00	-0.05
6	С	0.02	0.00	-0.09	0.00	0.00	0.01	6	С	-0.02	0.00	0.08	0.01	0.00	-0.04
7	Η	0.06	0.00	-0.15	-0.02	0.00	0.05	7	Η	-0.05	0.00	0.11	0.03	0.00	-0.09
8	Η	-0.01	0.00	-0.14	0.00	0.00	0.09	8	Η	0.00	0.00	0.10	0.00	0.00	-0.13
9	Η	0.06	0.00	0.05	-0.04	0.00	0.00	9	Η	-0.04	0.00	-0.04	0.05	0.00	0.03
10	Η	-0.05	0.00	0.04	0.04	0.00	0.01	10	Η	0.04	0.00	-0.04	-0.05	0.00	0.00
11	Η	-0.02	0.00	0.10	-0.01	0.00	-0.03	11	Η	0.03	0.00	-0.08	0.01	0.00	0.07
12	S	-0.05	0.00	0.03	-0.08	0.00	-0.07	12	S	0.07	0.00	0.01	0.06	0.00	0.07
13	С	0.07	0.00	0.05	0.16	0.00	0.09	13	С	-0.08	0.00	-0.08	-0.10	0.00	-0.02
14	Η	0.12	0.00	0.06	0.15	0.00	0.09	14	D	-0.22	0.00	-0.13	-0.03	0.00	0.00
15	Η	0.06	0.00	0.02	0.18	-0.01	0.11	15	D	-0.10	0.02	-0.05	-0.18	0.01	-0.15
16	Η	0.06	0.00	0.02	0.18	0.01	0.11	16	D	-0.10	-0.02	-0.05	-0.18	-0.01	-0.15
d	J A 1	v_{s}^{+} (721cm ⁻¹)			7a ⁺ (791cm ⁻¹)			4	J D1	vs ⁺	(731cn	n ⁻¹)	7a⁺	(765cn	n ⁻¹)
ul-	AI	X Y Z		X	Y	Ζ	u1-D1		X	Y	Ζ	X	Y	Ζ	
1	С	-0.02	0.00	0.09	-0.01	0.00	0.05	1	С	0.02	0.00	-0.09	0.01	-0.01	-0.05
2	С	0.09	0.00	-0.01	0.06	0.00	-0.01	2	С	-0.09	0.00	0.02	-0.05	0.00	0.00
3	С	-0.08	0.00	-0.03	-0.06	0.00	-0.05	3	С	0.07	0.00	0.03	0.06	-0.01	0.05
4	С	0.09	0.00	-0.01	0.07	0.00	-0.01	4	С	-0.10	0.00	0.01	-0.06	-0.01	0.00
5	С	-0.07	0.00	-0.04	-0.05	0.00	-0.04	5	С	0.07	0.00	0.04	0.06	-0.01	0.04
6	С	0.02	0.00	-0.09	0.01	0.00	-0.03	6	С	-0.02	0.00	0.08	-0.01	0.01	0.04
7	Н	0.05	0.00	-0.12	0.03	0.00	-0.10	7	Η	-0.05	0.00	0.13	-0.03	0.03	0.08
8	Н	0.00	0.00	-0.12	-0.01	0.00	-0.11	8	Η	0.01	-0.01	0.11	0.00	0.06	0.11
9	Н	0.04	0.00	0.05	0.06	0.00	0.01	9	Η	-0.05	0.01	-0.04	-0.04	0.03	-0.02
10	Н	-0.05	0.00	0.04	-0.04	0.00	0.00	10	Η	0.04	-0.01	-0.04	0.04	0.08	0.00
11	н			0.00	0.00			11	TT	0.02	0.00	0.00	0.01	0.04	-0.06
12	11	-0.02	0.00	0.09	0.00	0.00	0.05	11	Н	0.03	0.00	-0.09	-0.01	0.06	0.00
13	S	-0.02 -0.05	0.00	0.09	0.00	0.00	0.05	11	H S	0.03	0.00	-0.09	-0.01	-0.02	-0.05
	S C	-0.02 -0.05 0.06	0.00 0.00 0.00	0.09 0.00 0.08	0.00	0.00 0.00 0.00	0.05 0.08 -0.09	11 12 13	H S C	0.03 0.07 -0.09	0.00	-0.09 -0.01 -0.05	-0.01 -0.05 0.08	0.06 -0.02 0.05	-0.05 0.01
14	S C D	-0.02 -0.05 0.06 0.24	0.00 0.00 0.00 0.00	0.09 0.00 0.08 0.14	0.00 0.04 -0.08 -0.26	0.00 0.00 0.00 0.00	0.05 0.08 -0.09 -0.16	11 12 13 14	H S C H	0.03 0.07 -0.09 -0.12	0.00 0.01 -0.02 0.03	-0.09 -0.01 -0.05 -0.06	-0.01 -0.05 0.08 0.00	0.06 -0.02 0.05 -0.05	-0.05 0.01 -0.01
14 15	S C D H	-0.02 -0.05 0.06 0.24 0.05	0.00 0.00 0.00 -0.01	0.09 0.00 0.08 0.14 0.01	0.00 0.04 -0.08 -0.26 -0.09	0.00 0.00 0.00 0.00 0.02	0.05 0.08 -0.09 -0.16 -0.04	11 12 13 14 15	H S C H D	0.03 0.07 -0.09 -0.12 -0.19	0.00 0.01 -0.02 0.03 0.02	-0.09 -0.01 -0.05 -0.06 -0.12	-0.01 -0.05 0.08 0.00 0.35	0.06 -0.02 0.05 -0.05 -0.05	-0.05 0.01 -0.01 0.26
14 15 16	II S C D H H	-0.02 -0.05 0.06 0.24 0.05 0.05	0.00 0.00 0.00 -0.01 0.01	0.09 0.00 0.08 0.14 0.01 0.01	0.00 0.04 -0.08 -0.26 -0.09 -0.09	0.00 0.00 0.00 0.02 -0.02	0.05 0.08 -0.09 -0.16 -0.04 -0.04	$ \begin{array}{r} 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 16 \\ \end{array} $	H S C H D H	0.03 0.07 -0.09 -0.12 -0.19 -0.03	0.00 0.01 -0.02 0.03 0.02 0.00	-0.09 -0.01 -0.05 -0.06 -0.12 0.00	-0.01 -0.05 0.08 0.00 0.35 -0.04	0.06 -0.02 0.05 -0.05 -0.05 -0.02	-0.05 0.01 -0.01 0.26 -0.01
14 15 16	II S C D H H	-0.02 -0.05 0.06 0.24 0.05 0.05	0.00 0.00 0.00 -0.01 0.01	0.09 0.00 0.08 0.14 0.01 0.01	0.00 0.04 -0.08 -0.26 -0.09 -0.09	0.00 0.00 0.00 0.00 0.02 -0.02	0.05 0.08 -0.09 -0.16 -0.04 -0.04	11 12 13 14 15 16	H S C H D H	0.03 0.07 -0.09 -0.12 -0.19 -0.03	0.00 0.01 -0.02 0.03 0.02 0.00	-0.09 -0.01 -0.05 -0.06 -0.12 0.00	-0.01 -0.05 0.08 0.00 0.35 -0.04	0.06 -0.02 0.05 -0.05 -0.05 -0.02	-0.05 0.01 -0.01 0.26 -0.01
14 15 16	II S C D H H	-0.02 -0.05 0.06 0.24 0.05 0.05	0.00 0.00 0.00 -0.01 0.01	0.09 0.00 0.08 0.14 0.01 0.01	0.00 0.04 -0.08 -0.26 -0.09 -0.09 7a ⁺	0.00 0.00 0.00 0.02 -0.02	0.05 0.08 -0.09 -0.16 -0.04 -0.04 n ⁻¹)	11 12 13 14 15 16	H S C H D H	0.03 0.07 -0.09 -0.12 -0.19 -0.03	0.00 0.01 -0.02 0.03 0.02 0.00	-0.09 -0.01 -0.05 -0.06 -0.12 0.00	-0.01 -0.05 0.08 0.00 0.35 -0.04 7a ⁺	0.06 -0.02 0.05 -0.05 -0.05 -0.02	-0.05 0.01 -0.01 0.26 -0.01
14 15 16 d ₂ -	II S C D H H H	-0.02 -0.05 0.06 0.24 0.05 0.05	0.00 0.00 0.00 -0.01 0.01 (730cm V	0.09 0.00 0.08 0.14 0.01 0.01 n-1)	0.00 0.04 -0.08 -0.26 -0.09 -0.09 7a ⁺	0.00 0.00 0.00 0.02 -0.02 (769cm	0.05 0.08 -0.09 -0.16 -0.04 -0.04 n ⁻¹)	11 12 13 14 15 16 d ₂ -	н <u>S</u> <u>C</u> <u>H</u> <u>D</u> <u>H</u> <u>B</u> 2	0.03 0.07 -0.09 -0.12 -0.19 -0.03 v s ⁺	0.00 0.01 -0.02 0.03 0.02 0.00 (718cm	-0.09 -0.01 -0.05 -0.06 -0.12 0.00 n ⁻¹)	-0.01 -0.05 0.08 0.00 0.35 -0.04 7a ⁺	0.06 -0.02 0.05 -0.05 -0.05 -0.02	-0.05 -0.05 0.01 -0.01 0.26 -0.01 n ⁻¹)

2	С	-0.09	0.00	0.02	-0.06	0.00	0.00	2	С	-0.08	0.00	0.01	-0.05	0.00	0.00
3	С	0.07	0.00	0.03	0.06	0.00	0.06	3	С	0.07	0.00	0.03	0.06	-0.01	0.05
4	С	-0.10	0.00	0.01	-0.06	0.00	0.00	4	С	-0.08	0.00	0.01	-0.06	0.00	0.00
5	С	0.06	0.00	0.04	0.06	0.00	0.04	5	С	0.07	0.00	0.03	0.06	0.00	0.04
6	С	-0.02	0.00	0.08	-0.01	0.00	0.04	6	С	-0.02	0.00	0.08	-0.01	0.00	0.04
7	Н	-0.05	0.00	0.13	-0.03	0.00	0.08	7	Н	-0.05	0.00	0.11	-0.03	0.00	0.08
8	Η	0.00	0.00	0.11	0.00	0.00	0.13	8	Η	0.00	0.00	0.10	0.00	0.03	0.11
9	Η	-0.05	0.00	-0.04	-0.04	0.00	-0.02	9	Η	-0.04	0.00	-0.04	-0.04	-0.01	-0.02
10	Η	0.04	0.00	-0.04	0.05	0.00	0.00	10	Η	0.04	-0.01	-0.04	-0.04	0.05	0.00
11	Н	0.03	0.00	-0.09	-0.01	0.00	-0.06	11	Н	0.03	0.00	-0.08	-0.01	0.02	-0.06
12	S	0.07	0.00	-0.01	-0.06	0.00	-0.07	12	S	0.07	0.00	0.01	-0.05	-0.02	-0.05
13	С	-0.09	0.00	-0.05	0.11	0.00	0.02	13	С	-0.08	-0.02	-0.08	0.08	0.06	0.01
14	Η	-0.12	0.00	-0.06	0.02	0.00	-0.01	14	D	-0.23	0.02	-0.13	-0.01	-0.05	-0.02
15	D	-0.13	0.01	-0.07	0.19	-0.01	0.15	15	D	-0.14	0.02	-0.08	0.37	-0.06	0.25
16	D	-0.13	-0.01	-0.07	0.19	0.01	0.15	16	Η	-0.03	-0.01	0.00	-0.06	-0.02	0.00

Table S9. Calculated molecular structural parameters for S_1/S_2 crossing (seam) points obtained via the 7a normal coordinate scan (Fig. S3) including S_1/S_2 MECI. The crossing points (CP) 1~4 are from $-h_3$, $-d_3$, $-d_1$ -A1, and $-d_1$ -A2 isomers. The values in parentheses are obtained with CASPT2 correction.

	Equilibrium. Crossing points in Figure S3.							
	S_1 min.	CP1	CP2	CP3	CP4	MECI		
Relative E.	-	+5595	+9375	+10170	+8867	+2617		
$/(cm^{-1})$	-	(+1721)	(+8595)	(+5526)	(+4280)	(+3726)		
d(S-CH ₃) / (Å)	1.87	2.08	2.05	2.07	2.05	2.13		
d(C-SCH ₃) / (Å)	1.79	1.68	1.63	1.63	1.64	1.78		
$\gamma(S-C_{(2)}-H_{(3)}-) \ / \ (^{\circ})$	104.91	104.06	100.12	116.34	99.19	101.24		
$\gamma(C_{(2)}\text{-}S\text{-}C_{(1)}) / (\circ)$	103.13	104.21	103.35	106.30	103.10	102.63		
d(C-C) ^a / (Å)	1.43	1.39	1.38	1.38	1.39	1.42		

^a averaged values for the phenyl moiety

Figure S4. Gradient difference (h) and derivative coupling (g) vectors for each crossing points (CP1~4) depicted in Fig. S3 and S_1/S_2 MECI.

FIGURE S5. CI seam plotted along the S-Me bond length and (a) C_{ring}-SMe bond length, (b) S-C-H bond angle, and (c) C-S-C bond angle. CI seam is build up with the crossing points in Fig. S3 and MECI.

FIGURE S6. Calculated potential energy profiles of the first (S_1 , red) and second (S_2 , blue) electronically excited states along 7a asymmetric stretching normal coordinates, obtained by SA4/CASSCF (dashed line) and CASPT2 (solid line) level of theory for thianisole-h3. The green star indicates CASSCF S_1/S_2 crossing point. Corresponding 7a normal mode coordinates on S_1 and S_2 electronic states are developed with cationic vibrational normal modes, and x axis coordinate starts with from the cationic minimum geometry and covers 7a normal coordinates with the directions of stretched S-CH3 bond length. Purple dashed line represents energy for one quantum of 7a vibrational mode with zero-point energy correction.