Electronic Supplementary Information for original manuscript submitted for publication in

Physical Chemistry Chemical Physics

CO diffusion as re-orientation mechanism in NaY zeolite

A.A. Rybakov ${ }^{\text {a }}$, A.V. Larin*a), D.P. Vercauteren*b)
${ }^{\text {a) }}$ Chemistry Department, Moscow State University, Leninskie Gory, Moscow, GSP-2, 119991 Russia; ${ }^{\text {b }}$ University of Namur, Rue de Bruxelles 61, Namur, B-5000, Belgium

TOTAL PAGES 6
TABLES 3
FIGURES NO
${ }^{\text {*) }}$ corresponding authors: Nasgo@yandex.ru, daniel.vercauteren@unamur.be

Part S1. NaY models with NaIII

Comparing our models with the earlier data obtained by Nour et.al. in NaY , one should emphasize two differences, i.e., $\mathrm{Si} / \mathrm{Al}=2.5$ and cut-off for kinetic energy of $600 \mathrm{eV}^{1}$ versus 3.0 and 500 eV herein. Hence we obviously do not obtain the same results as with the periodic models presented in ref. 1. As comparison, for NaII-CO-NaIII, the periodic 48T models of NaY named PBE1 or PBE2 give $\Delta \omega_{\mathrm{LF}}=-7$ or $-20 \mathrm{~cm}^{-1}$, (see Table 2 in ref. 1) while our $\Delta \omega_{\mathrm{LF}}$ value is $-22.7 \mathrm{~cm}^{-1}$ for NaII-OC at the PBE level. The results of the calculations using 42T-cluster models of NaY at the B3LYP/6-311++G(d, p) (Na-CO-Na)/6-31G (d)(Al, Si, $\left.\mathrm{O}_{\mathrm{z}}, \mathrm{Na}^{\prime}\right)$ level ${ }^{1}$ coincide nicely to the experimental ones for both $\Delta \omega_{\mathrm{HF}}\left(30 \mathrm{~cm}^{-1}\right.$ for NaIII-CO-NaII) (Figure 2a) and $\Delta \omega_{\mathrm{LF}}$ (-19 cm^{-1} for NaII-CO-NaIII). Our OC-NaIII-CO model with one NaIII per supercage (Table S2) leads to a similar ω_{HF} splitting into $40.6 \mathrm{~cm}^{-1}$ and $20.8 \mathrm{~cm}^{-1}$ relative to the main peak of NaIII-CO $\left(\Delta \omega_{\mathrm{HF}}=30.9 \mathrm{~cm}^{-1}\right.$ or $\omega_{\mathrm{HF}}=2166.4$ in Table S2). The values $9.7\left(9.7=40.6-30.9 \mathrm{~cm}^{-1}\right)$ and -10.1 $\mathrm{cm}^{-1}\left(-10.1=20.8-30.9 \mathrm{~cm}^{-1}\right)$ are close to the experimental positions for the red and blue shifted branches as 12 and $-15 \mathrm{~cm}^{-1}$ (see Part 3.3). ${ }^{2}$ Let us note that no proper NaII-CO-NaIII model could be obtained herein for the blue shifted $\omega_{\text {LF }}$ band (relative to the gas phase frequency). All three theory levels result in the $\left(\Delta \omega_{\mathrm{HF}}, \Delta \omega_{\mathrm{LF}}\right)$ pairs of $\left(30.9,0.4 \mathrm{~cm}^{-1}\right),\left(26.3,-2.7 \mathrm{~cm}^{-1}\right),(30.7$, $9.9 \mathrm{~cm}^{-1}$) using PBE, PBEsol, and optB86d, respectively. The NaII-CO-NaIII models considered at the PBE and optB86d theory levels possess higher interaction energy (in absolute value), i.e., 6.0 (for CO) $/ 5.3$ (for OC) $\mathrm{kcal} / \mathrm{mol}$ and 9.9 (for CO) $/ 9.9$ (for OC) $\mathrm{kcal} / \mathrm{mol}$ (Table S2), respectively, compared to CO-NaII, i.e., 5.4 (for CO) 3.3 (for OC) $\mathrm{kcal} / \mathrm{mol}$ and $8.1(\mathrm{CO}) / 7.0(\mathrm{OC}) \mathrm{kcal} / \mathrm{mol}$ (Table 2). If the NaIII sites are present initially in the system, they should be the first occupied with ($\Delta \omega_{\mathrm{HF}}, \Delta \omega_{\mathrm{LF}}$) pairs of $\left(30.9,0.4 \mathrm{~cm}^{-1}\right)$ and $\left(30.7,9.9 \mathrm{~cm}^{-1}\right)$. Such intensive peaks around gas frequency values are not visible in IR for $\mathrm{NaY} ;{ }^{2}$ the idea of the NaIII presence can hence be further discussed only at the PBEsol level. The $\Delta \omega_{\mathrm{HF}}$ peak is assigned to the favored NaII-CO site $\left(-39.1 \mathrm{~cm}^{-1}\right)$ and the $\Delta \omega_{\text {LF }}$ peak to NaII-OC $\left(-29.7 \mathrm{~cm}^{-1}\right)$.

However, at this level we did not obtained a reasonable $\Delta \omega_{\mathrm{HF}}$ splitting, i.e., the analogue of the branch at $2183 \mathrm{~cm}^{-1}$ red-shifted relative to the main peak at $2171 \mathrm{~cm}^{-1},{ }^{2}$ while the OC-NaII-CO site $\left(\Delta \omega_{\mathrm{HF}}=31.6\right.$ and $\left.21.9 \mathrm{~cm}^{-1}\right)$ led to analogues of the experimental blue-shifted branch (peak $\left.2156 \mathrm{~cm}^{-1}\right) .{ }^{2}$ We thus have no yet reached a correct assignment at the PBEsol level for the model with NaIII cation, this one being present at small CO coverage. ${ }^{1}$ But more importantly, let us remark that the comparison of the calculated HF and LF bands in the NaY model with NaIII at the cluster level can be not complete as the authors in ref. 1 did not consider any relative destabilization of the system due to proposed mechanism of NaIII formation at definite CO coverage ${ }^{3-6}$ (see Discussion).

Table S1. Total energy (eV) of CO and molecular length $\rho(\AA)$ and frequency $\left(\mathrm{cm}^{-1}\right)$ in the gas phase calculated at the different DFT levels.

Method	-U	ρ	ω
PBE	14.777	1.1431	2135.5
PBEsol $\left.^{2}\right)$	14.549	1.1415	2153.3
optB86d 2	12.676	1.1424	2129.5
Exp.	-	1.128^{7}	$2143,2169.8^{7}$

${ }^{\text {a) }}$ same values for PBEsol-D2 and PBEsol-D3(BJ).

Table S2. Total energy $\mathrm{U}(\mathrm{eV})$, its change $\Delta \mathrm{U}(\mathrm{kcal} / \mathrm{mol})$ corresponds: a) to the increase (destabilization) of the cell energy due to the shift of NaII to the NaIII site, if no CO is adsorbed, b) to the adsorption energy per one CO molecule relative to the non-interacting zeolite and gas phase CO (the data in Table S1), if CO is adsorbed, molecular |C-O| bond length and other distances (\AA), CO frequencies (ω, cm^{-1}), and its shift $\Delta \omega$ versus gas phase CO calculated at different theory levels at the presence of one NaIII cation per supercage. The orientation is given in column 2 where the first atom of CO or OC is directed towards Na . The number $\mathrm{N}=1,2$, of the occupied Na sites is shown in the parentheses (column 2). Cases CO and OC correspond to NaII-CO-NaIII and NaII-OC-NaIII, respectively.

DFT	Case (N)	-U	$-\Delta \mathrm{U}$	$\|\mathrm{C}-\mathrm{O}\|$	$\|\mathrm{C} / \mathrm{O}-\mathrm{Na}\|^{\text {a }}$	$\left\|\mathrm{Na}-\mathrm{O}_{\mathrm{z}}\right\|$	$\begin{aligned} & \omega_{\mathrm{HF}}, \\ & \omega_{\mathrm{LF}} \\ & \hline \end{aligned}$	$\Delta \omega_{\mathrm{HF}}$, $\Delta \omega_{\mathrm{LF}}$
PBE	-	1160.88	7.6	-	-	$\begin{gathered} \text { 2.311, 2.316, } 2.356 \\ 2.441,2.464,2.519 \\ 2.776 \end{gathered}$	-	-
	$\mathrm{CO}^{\text {b) }}$	1175.92	6.0	1.1400	$\begin{gathered} 2.606(\mathrm{NaIII}), \\ 3.042 *(\mathrm{NaII}) \\ \hline \end{gathered}$	$\begin{gathered} 2.500,2.501,2.478 \\ 2.715 \end{gathered}$	2166.4	30.9
	OC	1175.88	5.3	1.1435	$\begin{gathered} \hline 2.545 *(\mathrm{NaIII}), \\ 2.933(\mathrm{NaII}) \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.469,2.496,2.495, \\ 2.764 \\ \hline \end{gathered}$	2135.9	0.4
	$\begin{gathered} \mathrm{CO}, \\ \mathrm{CO} \\ \text { (NaII/ } \\ \text { NaIII) } \end{gathered}$	1190.89	5.3	$\begin{aligned} & 1.1390, \\ & 1.1382 \end{aligned}$	2.611, 2.592	$\begin{gathered} 2.326,2.359,2.332, \\ 2.466,2.470,2.511, \\ 2.740 \end{gathered}$	$\begin{gathered} \hline 2183.7, \\ 2178.1 \end{gathered}$	$\begin{aligned} & 48.2, \\ & 42.6 \end{aligned}$
	$\begin{gathered} \hline 2 \mathrm{CO} / \\ \mathrm{NaII} \end{gathered}$	1190.82	4.5	$\begin{aligned} & \hline 1.1396, \\ & 1.1437 \end{aligned}$	2.747, 2.849	2.382, 2.374, 2.454	$\begin{aligned} & \hline 2168.2, \\ & 2133.9 \end{aligned}$	$\begin{gathered} 32.7 \\ -1.6 \end{gathered}$
	$\begin{aligned} & 2 \mathrm{CO} / \\ & \mathrm{NaIII} \end{aligned}$	1190.90	5.4	$\begin{aligned} & 1.1384, \\ & 1.1417 \end{aligned}$	2.647, 2.698	$\begin{gathered} 2.507,2.513,2.587, \\ 2.806 \end{gathered}$	$\begin{aligned} & 2176.1, \\ & 2156.3 \end{aligned}$	$\begin{aligned} & 40.6 \\ & 20.8 \end{aligned}$
$\begin{gathered} \text { PBEs } \\ \text { ol } \end{gathered}$	-	1129.05	6.1	-	-	$\begin{gathered} 2.249,2.290,2.330, \\ 2.408,2.478,2.428, \\ 2.742 \end{gathered}$	-	-
	CO	1143.89	5.0	1.1371	$\begin{aligned} & 2.608 \text { (NaIII), } \\ & 3.026^{*}(\mathrm{NaII}) \end{aligned}$	$\begin{gathered} 2.445,2.471,2.471, \\ 2.688 \end{gathered}$	2179.8	26.3
	OC	1143.84	3.8	1.1419	$\begin{gathered} 2.592 *(\mathrm{NaIII}), \\ 2.845(\mathrm{NaII}) \end{gathered}$	$\begin{gathered} 2.330,2.330 \\ 2.330,2.349 \\ 2.436,2.456,2.734 \end{gathered}$	2150.8	-2.7
$\begin{aligned} & \text { optB8 } \\ & 6 \mathrm{~d} \end{aligned}$	-	1056.70	5.8	-	-	$\begin{gathered} \hline 2.302,2.306, \\ 2.337,2.439 \\ 2.440,2.462,2.715 \\ \hline \end{gathered}$	-	-
	CO	1069.81	9.9	1.1404	$\begin{aligned} & \hline 2.640(\mathrm{NaIII}), \\ & 2.872 *(\mathrm{NaII}) \end{aligned}$	$\begin{gathered} \hline 2.317,2.317, \\ 2.352,2.442, \\ 2.465,2.488,2.679 \\ \hline \end{gathered}$	2160.2	30.7
	OC	1069.81	9.9	1.1425	$\begin{gathered} \hline 2.788(\mathrm{NaII}), \\ 2.590^{*}(\mathrm{NaIII}) \end{gathered}$	$\begin{gathered} \hline 2.322,2.322, \\ 2.374,2.455, \\ 2.458,2.467,2.728 \\ \hline \end{gathered}$	2139.4	9.9

${ }^{\text {a) }}$ the distance between O -atom and nearest Na cation (its type is given in brackets) is shown by star; ${ }^{\text {b) }}$ see Figure 2a.

Table S3. Distances between the C and O atoms of CO molecule and the O_{z} atoms (\AA) of the NaY , calculated at the different DFT levels.

Type	Case	$\|\mathrm{C} / \mathrm{O}-\mathrm{Na}\|^{(\mathrm{a})}$	$\mathrm{O}_{\mathrm{CO}-\mathrm{O}_{\mathrm{z}}}$	$\mathrm{C}-\mathrm{O}_{\mathrm{z}}$
PBE	CO, OC (1)	2.802	3.384,	3.406,
			3.373	3.914
PBEsol	CO, OC (1)	2.705	3.290,	3.156,
			3.664	3.742
	CO, OC (1)	2.951	3.403,	3.380,
			3.357	3.419
	CO, OC (1)	2.628	3.548,	3.709,
			3.587	3.773
	$2 \mathrm{CO}(1)$	2.984	3.530,	3.538,
			3.373	3.312

${ }^{\text {a) }}$ The data corresponds to those in $6^{\text {th }}$ column of Table 2.

References

1 Z. Nour, H. Petitjean and D. Berthomieu, J. Phys. Chem. C, 2010, 114, 17802-17811.
2 A. A. Tsyganenko, P. Y. Storozhev and C. Otero Areán, Kinet. Catal., 2004, 45, 530-540.
3 C. P. Grey, F. I. Poshni, A. F. Gualtieri, P. Norby, J. C. Hanson and D. R. Corbin, J. Am. Chem. Soc., 1997, 119, 1981-1989.

4 K. H. Lim and C. P. Grey, J. Am. Chem. Soc., 2000, 122, 9768-9780.
5 C. Mellot-Draznieks, J. Rodriguez-Carvajal, D. E. Cox and A. K. Cheetham, Phys. Chem. Chem. Phys., 2003, 5, 1882-1887.

6 D. F. Plant, G. Maurin, H. Jobic and P. L. Llewellyn, J. Phys. Chem. B, 2006, 110, 14372-14378.

7 D. H. Rank, A. G. St. Pierre and T. A. Wiggins, J. Mol. Spectrosc., 1965, 18, 418-427.

