ELECTRONIC SUPPLEMENTARY INFORMATION

Comment on "Elucidation of charge-transfer SERS selection rules by considering the excited state properties and the role of electrode potential" by M. Mohammadpour, M. H. Khodabandeh, L. Visscher and Z. Jamshidi, *Phys. Chem. Chem. Phys.*, 2017, 19, 7833

D. Aranda, J. Román-Pérez, I. López-Tocón, J. Soto, F. Avila* and J. C. Otero*a

Universidad de Málaga, Andalucía Tech, Facultad de Ciencias, Departamento de Química Física, Unidad Asociada CSIC, 29071-Málaga, Spain, E-mail: avila@uma.es, jc_otero@uma.es; Fax and Tel.: +34 952132019.

Figure S1. Py-Ag₆ perpendicular complex used in ref. 1 for modeling the pyridine bonded to the silver electrode, with the molecule pointing towards positive +z-axis. Gaussian 09 sign convention for finite fields: When a +Z valued is introduced in the FIELD keyword an electric field is applied in the opposite direction $-E_z$, i.e., pointing towards the metal, which corresponds to negative electrode potentials (-V).

Figure S2. Schemes showing how set of results reported in Table 2 of ref. 1 corresponding to positive (+V) and negative (-V) electrode potentials are both labelled as a) negative (-0.0090 a.u.) or b) positive electric fields (+0.0030 a.u.).

Figure S3. Effect of the electric field on the $I_{k,CT}^{preRR(1)}$ intensities of Py-Ag₆ calculated by using the dimensionless displacements $\Delta_{k,CTA1}$ reported in Table S3 of ref. 1 for the 6a, 9a and 8a modes. Electric fields labelled according to ref. 1. The value of $\Delta_{9a,CTA1}$ =0.1606 for +0.0030 a.u. seems to be wrong.

Table S1 Dependence of the TD-BP86/Def2-TZVPP calculated properties of the $CT_1;B_2$ and $CT_{A1};A_1$ states of Py-Ag₆ under applied electric field (Gaussian 09 sign convention).

HOMO_{Ag6};A₁

	Field (a.u.) ^a	Root ^b	Energy (eV)	Weight ^c	$\Delta q^{clusterd}_{S0 \rightarrow Sn}$	$f^{ m e}$
-	0.009 ^f	1	0.1382	0.71152	-0.134037	0.0001
	0.006	1	0.3990	0.70712	-0.712093	0.0001
	0.003	1	1.0065	0.70675	-0.759865	0.0002
	0.000	1	1.6424	0.70476	-0.736756	0.0006
	-0.003	2	2.2408	0.21700	-0.47096	0.0015
		3	2.4573	0.61045	-0.220648	0.0018
	-0.006	4	2.9467	0.47110	-0.339069	0.2511
		7	3.0574	-0.47958	-0.237323	0.3675
+	0.009	17	3.6195	0.69274	-0.474918	0.0137

HOMO-1_{Ag6};B₂

LUMO_{Py};B₂

	Field (a.u.) ^a	Root ^b	Energy (eV)	Weight ^c	$\Lambda a^{clusterd}$	f ^e
-V	0.009 ^f	2	0.2784	0.84796	0.056396	0.0163
	0.006	2	0.4103	0.70711	-0.666809	0.0036
	0.003	2	1.0874	0.70675	-0.779839	0.0018
	0.000	2	1.8005	0.70473	-0.761208	0.0017
	-0.003	4	2.4944	0.32150	-0.595706	0.0049
		5	2.7730	0.54816	-0.136401	0.0051
	-0.006	9	3.2480	0.40409	-0.179755	0.2871
		10	3.3704	0.55555	-0.358009	0.3661
+V	-0.009 ^g	>20	-	-	-	-

^aApplied electric field (Gaussian 09 sign convention). ^bRoot showing the largest weight of the corresponding CT monoelectronic configuration. At -0.003 and -0.006 a.u. the CT configuration is mixed with intracluster excitations (IC) and is missing in the first 20 excited states calculated at -0.009 a.u. ^cWeight of the CT configuration. ^dTransferred Mulliken's charges (a.u.) from Py to Ag₆ in the S₀ \Rightarrow S_{CT} transition. ^eOscillator strength. ^fCT states are too close to the ground electronic state at this particular field. This is why the corresponding $\Delta q_{S0\rightarrow Sn}^{cluster}$ deviated from the remaining ones. ^gCT_{A1} state does not appear in the first twenty excited states calculated at this field.

Figure S4. Dependence of the TD-BP86/Def-2TZVPP calculated energies of the CT_1 ; B_2 (orange) and CT_{A1} ; A_1 (blue) states of Py-Ag₆ under applied electric field (Gaussian 09 sign convention).