Supporting Information

Lysine-based amino-functionalized lipids for gene transfection: A study of the protonation state at the air-liquid interface

Stephanie Taßler^a, Christian Wölk^b, Christopher Janich^b, Bodo Dobner^b and Gerald

Brezesinskia

^a Max Planck Institute of Colloids and Interfaces, Science Park Potsdam-Golm, Am Mühlenberg 1, 14476 Potsdam, Germany

^b Martin-Luther-University (MLU) Halle-Wittenberg, Institute of Pharmacy, Wolfgang-Langenbeck-Straße 4, 06120 Halle (Saale), Germany

Table of Contents:

- 1. Additional Data
 - 1.1 π /A-Isotherms and corresponding Surface Gibbs Elasticity at 20 °C on HBr buffer (c = 2 mM, different pH values)
 - 1.1.1 DODAB
 - 1.1.2 TH10
 - 1.1.3 0010
 - 1.1.4 TH4
 - 1.1.5 OH4
 - 1.1.6 004
 - 1.1.7 TH14
 - 1.1.8 OH14
 - 1.1.9 0014
 - 1.2 Total Reflection X-Ray Fluorescence at 20 °C on HBr buffer (c = 2 mM, different pH values)
 - 1.2.1 Titration curve of OO10 (5 mN·m⁻¹ and 30 mN·m⁻¹)
 - 1.2.2 Titration curve of OO4 (5 mN·m⁻¹ and 30 mN·m⁻¹)
 - 1.3 X-Ray Reflectivity at 20 °C on HBr buffer (c = 2 mM, pH 3, pH 10)
 - 1.3.1 OO10 ($\pi = 30 \text{ mN} \cdot \text{m}^{-1}$)
 - 1.3.2 OO4 ($\pi = 30 \text{ mN} \cdot \text{m}^{-1}$)

1. Additional Data

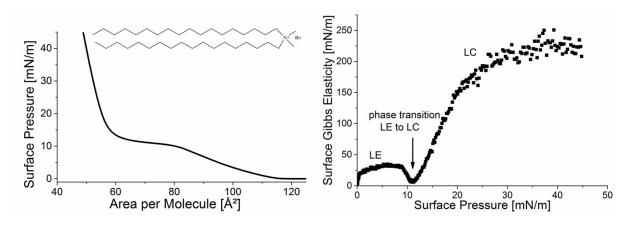
<u>1.1</u> π /A-Isotherms and Surface Gibbs Elasticity

The surface Gibbs elasticity ε_0 (also called surface compressional modulus C_{s}^{-1}) defines the elastic modulus representing a rheological quantity related to the monolayer rigidity and the capacity of a monolayer for energy storage. It can be obtained from the π/A – isotherms by the first derivation:

 $\epsilon_0 = -A(d\pi/dA)_T$

where A is the molecular area and $d\pi/dA$ is the slope of the isotherm at given molecular area. ε_0 is plotted versus the lateral pressure or the molecular area.

 $\epsilon_0 < 12.5$ mN/m: gas-analogue phase state (G)


 $\varepsilon_0 \approx 13 - 100$ mN/m: liquid-expanded phase state (LE)

 $\epsilon_0 \approx 100-250$ mN/m: liquid-condensed phase state (LC) with tilted alkyl chains

 $\varepsilon_0 > 250$ mN/m: solid phase state (SC, liquid-condensed phase state with untilted alkyl chains)

References

- 1 J. T. Davis and E. K. Rideal, *Interfacial Phenomena*, Academic Press, New York, 2nd Edition, 1963.
- 2 G. L. Gaines, *Insoluble monolayers at liquid-gas interfaces*, John Wiley & Sons Inc, 1st Edition., 1966.

2.1.1 **DODAB**

Figure S1: π /A-isotherm and surface Gibbs elasticity of **DODAB** at 20 °C on KCl buffer (c =10 mM)

2.1.2 TH10

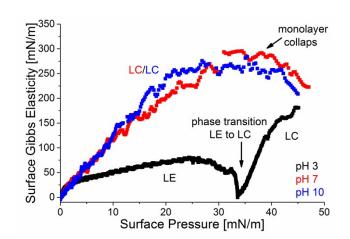


Figure S2: Surface Gibbs elasticity of TH10 at 20 °C on HBr buffer (c =2 mM)

2.1.3 **OO10**

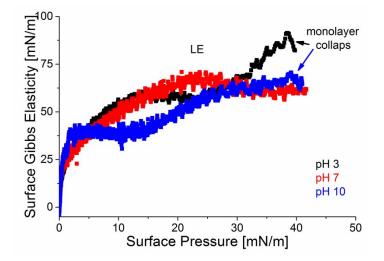
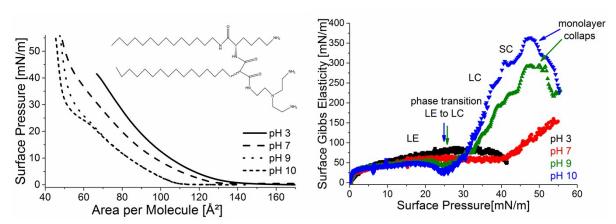



Figure S3: Surface Gibbs elasticity of OO10 at 20 °C on HBr buffer (c =2 mM)

2.1.4 **TH4**

Figure S4: π /A-isotherm and surface Gibbs elasticity of TH4 at 20 °C on HBr buffer (c =2 mM)

1.1.5 **OH4**

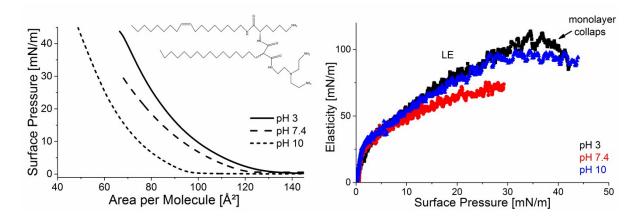


Figure S5: π /A-isotherm and surface Gibbs elasticity of OH4 at 20 °C on HBr buffer (c =2 mM)

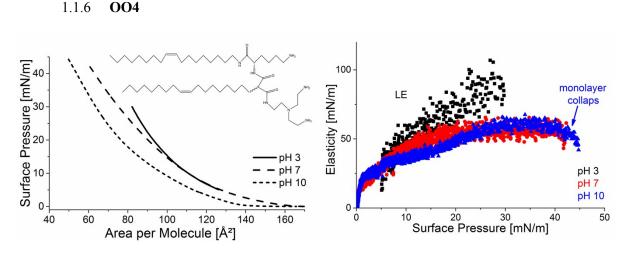


Figure S6: π /A-isotherm and surface Gibbs elasticity of OO4 at 20 °C on HBr buffer (c =2 mM)

1.1.7 **TH14**

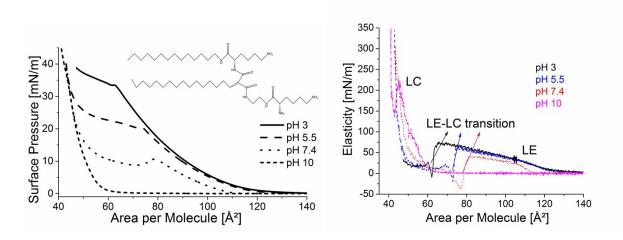


Figure S7: π /A-isotherm and surface Gibbs elasticity of TH14 at 20 °C on HBr buffer (c =2 mM)

1.1.8 **OH14**

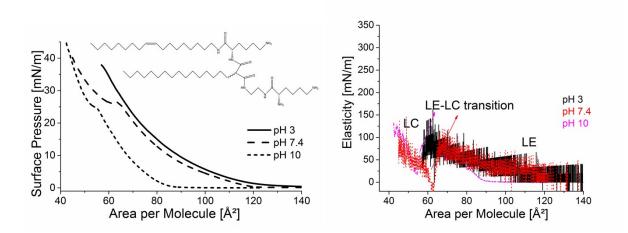


Figure S8: π /A-isotherm and surface Gibbs elasticity of OH14 at 20 °C on HBr buffer (c =2 mM)

1.1.9 **OO14**

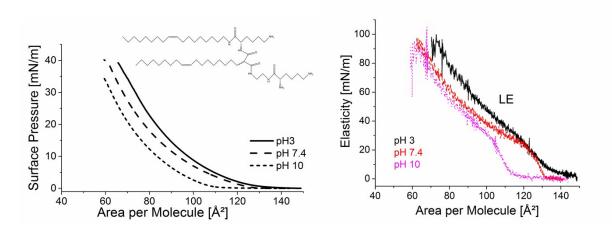
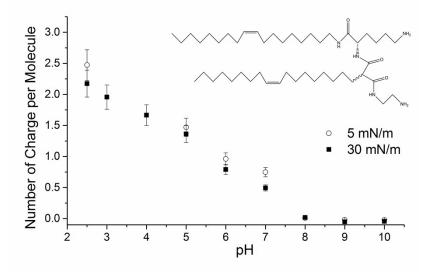
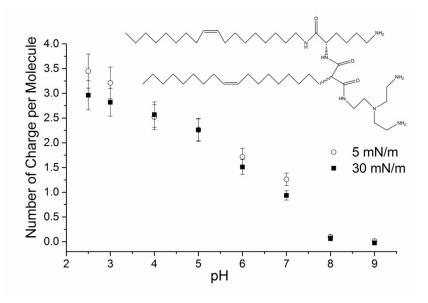



Figure S9: π /A-isotherm and surface Gibbs elasticity of OO14 at 20 °C on HBr buffer (c =2 mM)


1.2 Total Reflection X-Ray Fluorescence

1.2.1 Titration curve of **OO10** (5 mN·m⁻¹ and 30 mN·m⁻¹)

Figure S10: Number of Charge per Molecule for **OO10** on HBr buffer (2 mM, different pH values) at room temperature, $\pi = 5 \text{ mN} \cdot \text{m}^{-1}$ (o) and $\pi = 30 \text{ mN} \cdot \text{m}^{-1}$ (•)

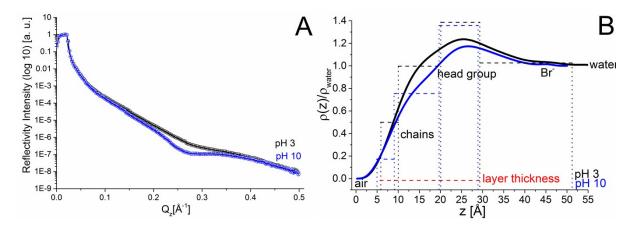

1.2.2 Titration curve of **OO4** (5 mN·m⁻¹ and 30 mN·m⁻¹)

Figure S11: Number of Charge per Molecule for **OO4** on HBr buffer (2 mM, different pH values) at room temperature, $\pi = 5 \text{ mN} \cdot \text{m}^{-1}$ (o) and $\pi = 30 \text{ mN} \cdot \text{m}^{-1}$ (•)

1.3 X-Ray Reflectivity

1.3.1 **OO10**

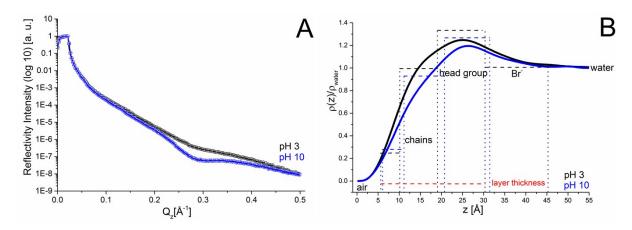

Figure S12: A X-ray reflectivity of **OO10** at 20 °C on HBr buffer at 30 mN·m⁻¹, **B** electron density normalized to that of water versus z. The box-model is shown.

Table S1: structural data obtained from fits of the specular X-ray reflectivity curves of OO10 on HBr buffer pH 3 and pH 10, 20 °C, 30 mN·m⁻¹.

	chain								
	z [Å]	ρ [e-/ Å-3]	e- [e- / Å-2]	theoretical number of electrons	z [Å]	ρ [e-/ Å-³]	e- [e- / Å-2]	theoretical number of electrons	measured numbers of electrons
рН 3	14.222	1.24	3.668	286	9.429	1.39	4.382	146	287
pH 10	14.756	0.925	2.909	286	9.24	1.359	4.199	146	250

10 e⁻ for H_2O ; 36 e⁻ for Br⁻

1.3.2 004

Figure S13: A X-ray reflectivity of **OO4** at 20 °C on HBr buffer at 30 mN·m⁻¹, **B** electron density normalized to that of water versus z. The box-model is shown.

Table S2: structural data obtained from fits of the specular X-ray reflectivity curves of OO4 on HBr buffer pH 3 and pH 10, 20 °C, 30 mN·m⁻¹.

	chain								
	z [Å]	ρ [e-/ Å ⁻³]	e- [e- / Å-2]	theoretical number of electrons	z [Å]	ρ [e-/ Å ⁻³]	e- [e- / Å-2]	theoretical number of electrons	measured numbers of electrons
рН 3	13.492	1.24	3.421	286	11.267	1.332	5.029	194	413
pH 10	14.606	1.207	3.412	286	10.872	1.27	4.617	194	294

10 e⁻ for H₂O; 36 e⁻ for Br⁻