Kinetic differences in the intercalation of linear and cyclic penta(ethylene oxide)s into graphite oxide leading to separation by topology

Fabienne Barroso-Bujans*a,b,c, Angel Alegriaa,d

^aMaterials Physics Center, CSIC-UPV/EHU, Paseo Manuel Lardizábal 5, San Sebastian 20018, Spain

^bDonostia International Physics Center (DIPC), Paseo Manuel Lardizábal 4, San Sebastian 20018, Spain

^cIKERBASQUE - Basque Foundation for Science, María Díaz de Haro 3, E-48013 Bilbao, Spain

^dDepartamento de Física de Materiales, University of the Basque Country (UPV/EHU), Apartado 1072, San Sebastian 20080, Spain

S1. SUPPLEMENTAL GRAPHS

Fig. S1. *In situ* XRD data of GO and an excess of $5EG_{OH}$ showing monolayer intercalation as a function of time at 40 °C and 80°C. The diffractograms were recorded every 3.7 min.

Fig. S2. In situ XRD data of GO and an excess of $5EG_{OMe}$ showing monolayer intercalation as a function of time at 40 °C and 80°C. The diffractograms were recorded every 3.7 min.

Fig. S3. *In situ* XRD data of GO and an excess of 15C5 showing monolayer intercalation as a function of time at 80 °C. The diffractograms were recorded every 30 min.

Fig. S4. XRD data of GO and an excess of $15C5_{OH}$ showing monolayer intercalation as a function of time. Total time = 19 days. Intercalation was carried out in an oven at 80 °C.

Fig. S5. XRD data showing the monolayer/bilayer reversibility for $5EG_{OH}$ intercalated in GO by cooling and heating. Upon fast cooling to 20 °C, the formation of the bilayer and the total disappearance of the monolayer occur in about 1.5 h. Upon fast heating to 80 °C, the formation of the monolayer and the total disappearance of the bilayer are practically instantaneous.

Fig. S6. Variation of T_g with the weight fraction of linear chains (L) in blends of cyclic/linear chains (C/L). Dashed line shows the Gordon-Taylor fit using the Eq. S2.

Fig. S7. (Left axis) Whole DSC thermogram for the *in situ* intercalation of a blend (75/25 wt% 15C5/5EG_{OH}) in GO by using a GO/5EG_{OH} ratio of 80/20 wt% at heating rates of 10 °C/min and nominal cooling rates of 50 °C/min (since the equipment cannot follow this cooling rate in the whole temperature range, a change in the heat flow at about -30 °C is observed). (Right axis) Time-temperature lines following the cooling, heating and isothermal runs.

Fig. S8. XRD data of a mixture of GO and 90:10 wt% 15C5:5EG_{OH} showing monolayer intercalation as a function of time at 40°C. Total intercalation time = 140 min.

Fig. S9. Cold crystallization and melting of $15C5/5EG_{OH}$ blends of different composition (wt%).

Fig. S10. Variation of T_g as a function of intercalation time in DSC experiments for *in* situ intercalation of blends of 15C5 and 5EG_{OH} at 40 °C (composition indicated in 15C5/5EG_{OH} wt%).

S2. EVALUATION OF DATA

S2.1 Extent of reaction

The extent of intercalation at any time (t) is defined as follows: ¹

$$\alpha(t) = I_{001}(t) / I_{001}(t_{\infty})$$
 Eq S1

where $I_{001}(t)$ represents the integrated intensity of the 001 reflection at time *t*, and $I_{001}(t_{\infty})$ is the integrated intensity when the intercalation is complete. $I_{001}(t_{\infty})$ was determined from the *y* intercept obtained by linearly fitting the $I_{001}(t)$ of intercalate *vs* the $I_{001}(t)$ of GO.

S2.2 Composition of non-intercalated liquid

In blends of 15C5 and 5EG_{OH}, the large T_g variation allowed us to establish a method to quantify the composition of non-intercalated liquid in GO (red diamonds of Figure S6). This method could not be established for the 15C5/5EG_{OMe} blends due to the insignificant variation of T_g at low amounts of the linear component (green triangles of Figure S6). The higher T_g observed for 5EG_{OH} respect to that for 15C5 can be attributed to hydrogen-bond interactions in the hydroxyl-terminated linear compound. This effect is not present in the methoxyl-terminated linear compound, 5EG_{OMe}, resulting in a T_g slightly lower than that of 15C5, in agreement with theoretical and experimental expectations.^{2, 3}

To calculate the composition of non-intercalated liquid in GO, we used the concentration dependence of T_g of Figure S6 as a calibration curve. The variation of the T_g data for 15C5/5EG_{OH} showed a composition dependence that is well-described by the Gordon–Taylor equation.⁴

$$T_g = \frac{f_1 T_{g,1} + K_{GT} (1 - f_1) T_{g,2}}{f_1 + K_{GT} (1 - f_1)}$$
Eq S2

 T_g is the glass transition temperature of the blend at the f_1 composition, f_1 is the fraction of 5EG_{OH} in the blend, $f_1 = 1 - f_2$, f_2 is the fraction of 15C5 in the blend, $T_{g,1} = 194.46 K$, $T_{g,2} = 173.11 K$ and $K_{GT} = 0.576$, as obtained from the fitting (R² =0.999). The parameter K_{GT} shows unequal contributions of both components to the blend; observed as different heat capacity steps (ΔC_p) at the glass transition: ΔC_p (15C5)= 0.86 J/gK and ΔC_p (5EG_{OH}) = 1.50 J/gK.

The composition of f_1 in the non-intercalated liquid was determined by isolating f_1 from Eq S2:

$$f_1 = \frac{K_{GT}(T_{g,2} - T_g)}{K_{GT}(T_{g,2} - T_g) + (T_g - T_{g,1})}$$
Eq S3

In this case, T_g is the glass transition of non-intercalated liquid during intercalation.

REFERENCES

(1) Evans, J. S. O.; Price, S. J.; Wong, H.-V.; O'Hare, D. Kinetic Study of the Intercalation of Cobaltocene by Layered Metal Dichalcogenides with Time-Resolved in Situ X-ray Powder Diffraction. *J. Am. Chem. Soc.* **1998**, *120*, 10837-10846

(2) Kricheldorf, H. R. Cyclic polymers: Synthetic strategies and physical properties. J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 251-284

(3) Tezuka, Y., *Topological Polymer Chemistry. Progress of Cyclic Polymers in Syntheses, Properties and Functions.* Word Scientific Publishing Co. Pte. Ltd.: 2013.

(4) Gordon, M.; Taylor, J. S. Ideal copolymers and the second-order transitions of synthetic rubbers. i. non-crystalline copolymers. J. Appl. Chem. **1952**, *2*, 493-500