
ELECTRONIC SUPPLEMENTARY INFORMATION

Electronic and optical properties of nanostructured MoS2 materials:
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S1 Technical details on our tight-binding (TB) calculations

Tight-binding (TB) model, as implemented in this work includes non-orthogonal sp3d5 orbitals and spin-
orbit coupling.1–4

We are solving a generalized eigenvalue problem:

∑
b′,β

Hb,b′

α,β (k)Ck,n(b′,β ) = εn(k) ∑
b′,β

Sb,b′

α,β (k)Ck,n(b′,β ) , (S1)

where H and S are TB Hamiltonian and overlap matrix, respectively. εn(k) are eigenvalues and Ck,n the
expansion coefficients for the eigenvectors of the band n. b (b′) labels a basis atom, and α (β ) orbital types
on that atom.

As already mentioned in the main body of the manuscript, the description of Hamiltonian H and the
overlap matrix S for MoS2 is attained by employing a set of 96 TB parameters that describe the on-site
orbital energies, the Slater-Koster energy integrals, overlap integrals, and the spin-orbit interaction, as given
in Refs.5,6 For intra-layer S-S, Mo-S, and Mo-Mo interactions we consider nearest-neighbor and for inter-
layer S-S interactions the second nearest neighbor hopping and overlap matrix elements. TB parameter-sets
are listed in Sec. S2.

The spin-orbit interaction is assumed to couple only intra-atomic states with nonzero angular momen-
tum,7–9 i.e., λaL̂a · Ŝa, where a=Mo,S, λ is the intra-atomic spin-orbit parameter. ∗ L̂ and Ŝ are the angular
momentum operator and spin operator, respectively.

The size of our TB and overlap matrices is NT B× NT B, where NT B = (NSNSorbitals + NMoNMoorbitals)×2.
NS (NMo) is number of S (Mo) atoms, and NSorbitals (NMoorbitals) is the number of S (Mo)-orbitals included
in TB model, in our case NSorbitals = NMoorbitals = 9. Factor 2 is due to spin. Given that we include only
nearest-neighbor interaction (and second-nearest for S-S for interlayer interaction), our matrices are sparse.
Thus, as it is a standard practice, only non-zero matrix elements are stored to memory.

In general, if properly parametrized, TB is considered to be an accurate atomistic representation of
nanostructured materials containing > 103 (even up to a few million) atoms; results on electronic, opti-
cal, and transport properties of TB method have typically shown a good agreement with experiment and
impressive predictive potential.3,4,9–11

Density of States (DOS) is defined as:

D(E) = ∑
k,n

δ (E− εk,n) , (S2)
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Partial DOS of an orbital α in the atom b is given by:

Dbα(E) = ∑
k,n

δ (E− εk,n)C
†
k,n(b,α)S(k)Ck,n(b,α) . (S3)

We remind the reader that for any two band indexes n and m: C†
k,nS(k)Ck,m = δnm.

In solving Eqs. (S2) and (S3) we use Lorentzian-broadening function instead of Dirac delta function,
δ (E−εk,n)→Γ/(π(Γ2+(E−εk,n)

2)). Typically broadening of Γ = 30 meV is assumed in our calculations.
The real part of optical conductivity in the dipole approximation can be obtained from:12–18

Re[σ(ω)] =
πe2

2h̄ωm2
e

occ

∑
n

empty

∑
m

∫
1BZ

d3k
(2π)2 |pnm(k)|2δ (εm,k− εn,k− h̄ω) , (S4)

where h̄ω is the photon energy, pnm is the momentum matrix element, and εn and εm are energies of nth and
mth bands, respectively. Also, e denotes the electron charge and me the electron mass. The integration is
carried over the first Brillouin zone (1BZ). For more details regarding Eq. (S4) see e.g., Refs.13,14.

The momentum matrix element, pnm, is defined as:

pnm(k) = 〈Ψm(k)| êp |Ψn(k)〉 , (S5)

where ê is direction of polarization of the incident light and p is the momentum operator.
We calculate pnm(k), Eq. (S5), directly from the TB Hamiltonian and the expansion coefficients for the

eigenvectors,15,16 without the need for additional parameters. Namely,15

pnm(k) = ∑
bα,b′α ′

=C†
k,n(b,α)Ck,m(b′,α ′)∑

R
eikRREbb′

αα ′(R) , (S6)

where Ebb′
αα ′(R) is the Slater-Koster matrix of tight-binding parameters,1 defined using our input TB param-

eter set.5,6

In solving Eq. (S4) instead of Dirac delta function we employ Lorentzian-broadening function.
For completeness, for calculating the real part of optical conductivity in Eq. (S4) we consider only

interband transitions. There is, however an additional contribution to the optical conductivity, coming from
intraband transitions. Because momentum conservation is not satisfied for direct absorption of a photon
by an intraband optical transition,14 these transitions depend on lattice imperfections (and temperature).
Intraband (Drude) contributions can be estimated from:19–21

Re[σ intra(ω)] =
πe2

2h̄ωm2
e

δ (h̄ω)∑
n

∫
1BZ

d3k
(2π)2 |pnn(k)|2δ (EF − εn,k) . (S7)

where Re[σ intra(ω)] can be calculated exploiting the following identity: pα
nn = 2∂εn,k/∂kα , where α =

x,y,z, see e.g., Ref.19

Given that Drude contribution depends on lattice imperfections, it is often represented using phenomeno-
logical expression:14,22 Re[σ intra(ω)] = σ0/(1+ω2τ2

D), where σ0 and τD denote dc conductivity and the
electron scattering time, respectively. There has been intensive discussion in literature whether this contri-
bution is sufficient, given that it only contributes to the isotropic part of the optical conductivity tensor,20,23

or it is necessary to include off-diagonal terms.21 In general, it was agreed this contribution can be neglected
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for energies higher than ∼1 eV.14,20,21 In this work, the contribution of intraband transitions to the real part
of optical conductivity was neglected.

Next, the total electron density (TED) and partial electron density (PED) are evaluated from:

ρ(r) = ∑
i

ni|Ψi(r)|2 , (S8)

where ni is the occupation of state Ψi.
Inspired by the number of numerical reports on PED of MoS2 nanoparticles, experimentally obtained

STM images, and linking PED with STM images on isolated MoS2 nanostructures,24–27 we calculate TED
and PED for our isolated model MoS2 nanodisks; consequently, k = 0 in our calculations.

Using the expansions coefficients Ck=0,i(b,α) = Ci(b,α), which are the output of TB calculations and
contain information about basis atoms and corresponding orbitals [see also Eq. (S1)], we construct Ψi(r)
by:

Ψi(r) = ∑
b,α

Ci(b,α)rb,nl(r−Rb)Ylm(r−Rb) , (S9)

where rb,nl(r−Rb)Ylm(r−Rb) represent atomic basis orbitals for a basis atom b located at Rb. It includes
the radial part, which is numerically adjusted (see below) and spherical harmonic Ylm(r−Rb). n, l, and m
denote principal, angular, and magnetic quantum numbers, respectively.

The radial part rb,nl is tuned taking into account d-d orbital interactions for Mo-Mo, p-d orbital interac-
tions for S-Mo, and p-p for S-S. We allow for radial functions of Mo and S to have different cut-off radia.
Results for the calculated TED and PED for our MoS2 nanodisk is shown in Figure 8 in the main body of
the manuscript.

S2 Tight-binding parameter sets

We use a set of ninety six parameters proposed and derived in Refs.5,6, which were fitted to the band struc-
ture of monolayer (1ML), bilayer (2ML), and bulk MoS2 obtained from DFT with HSE06 functional.5,6

The parameters are listed in Table S1. This TB parameter set is also denoted as TB set 1 in Sec. 3.2 in the
main body of the manuscript where we compare the lowest conduction band and the highest valence band
for 1ML MoS2 calculated using three different parameter sets.

As discussed in the main body of the manuscript [Sec. 3.2], alternative MoS2 TB parameter sets were
proposed to describe the band structure of 1ML of MoS2. A TB model based on those parameter sets
assumes eleven orthogonal orbitals (4d Mo and 3p S) to describe CBM and VBM of 1ML MoS2, requiring
12 (+2 for spin-orbit coupling) parameters. Cappelluti et al. in Refs.8,29 derived TB parameters which we
refer to as TB set 2 in Sec. 3.2, and Ridolfi et al. in Ref.30 parameters referred to as TB set 3. We remind
the reader that detailed comparison between TB calculations using TB set 1, TB set 2, and TB set 3 is given
in Sec. 3.2.

Table S2 contains parameters of TB set 2 and Table S3 parameters of TB set 3. We note Cappelluti et
al., TB set 2, also proposed two additional parameters to model the lowest conduction band and the highest
valence band of bulk MoS2; a reasonable agreement with DFT calculations was found around K point.8,29
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Table S1 Tight-binding parameter set for MoS2 as proposed in Refs.5,6 and used in this work. Intra-atomic spin-orbit parameters are taken
from Ref. 28. Also, this parameter set is referred to as TB set 1 in Sec. 3.2.

On-site energies (in eV) Spin-orbit parameter (in eV)
S Mo S Mo

Es 8.21704600 5.56599100 λ 0.05700000 0.13000000
Ep -2.00758000 7.47501400
Ed 9.05457100 2.00856100

Slater-Koster energy integrals (in eV)
intra-layer inter-layer
S-S S-Mo Mo-S Mo-Mo S-S

Vssσ 0.35039000 -0.40357580 -0.40357580 0.20175660 0.09593108
Vspσ -0.88529290 0.47482550 1.40922000 1.09058100 0.29708310
Vsdσ -0.25082810 0.59497540 -0.57651860 -0.41934230 0.13338260
Vppσ 0.75877300 1.50083700 1.50083700 -0.77366480 0.78874210
Vppπ -0.17854660 -0.44403510 -0.44403510 0.55548210 -0.09046535
Vpdσ -0.48367680 -2.92015000 -2.12676700 -0.27166720 -0.15754920
Vpdπ -0.05438542 0.87967080 2.07882900 0.13757700 0.00692037
Vddσ 0.69155650 -3.24960500 -3.24960500 0.08963398 -0.08309669
Vddπ 0.92089080 2.36485200 2.36485200 0.12100610 0.28221060
Vddδ -0.12831850 -0.38452100 -0.38452100 0.09734699 -0.00555235

Overlap integrals
intra-layer inter-layer
S-S S-Mo Mo-S Mo-Mo S-S

Ossσ -0.08986125 0.05725651 0.05725651 -0.07436093 -0.02666435
Ospσ -0.02968737 -0.02521967 -0.11652550 -0.04082800 -0.04285134
Osdσ 0.06398180 0.02522340 -0.12473430 -0.13278140 -0.00695736
Oppσ 0.03247643 -0.11079410 -0.11079410 0.02904314 -0.07211146
Oppπ -0.02765439 0.04323795 0.04323795 0.03756407 -0.00804274
Opdσ 0.09256573 0.10676990 -0.21366630 -0.01685267 0.00714757
Opdπ 0.07367491 -0.00825893 0.20296200 -0.03728849 0.03526020
Oddσ 0.31860380 -0.00700407 -0.00700407 -0.04149141 -0.06104299
Oddπ 0.06890423 0.15131840 0.15131840 -0.01814713 -0.03877815
Oddδ 0.02819366 0.15207940 0.15207940 0.00874711 -0.02324867

S3 Applicability of our TB approach from bulk, surfaces, to nanostructures: Issue of local charge
neutrality

The issue: One of the major challenges in the application of a parametrized (semi-empirical) TB model for
the electronic structure calculation of nanostructured materials is the development of transferable parame-
ters that can be reliably used for bulk, surfaces, nanowires and nanodisks. The problem is to account for
interatomic charge redistribution in surfaces, heterojunctions, or geometrically inhomogeneous systems in
general.3,31,32 If not properly treated, which is the case for a standard TB parametrization, nonphysically
large charge transfers occur leading to displacements of surface states and the distortion of DOS.31,32

Background and proposed solutions: The TB on-site matrix elements are a function of the local environ-
ment around each atom. In TB parametrization, on-site energies either use ad hoc models for the variation of
TB on-site elements with changes in the environment, or the on-site energies are fixed and typically fitted to
reproduce the bulk band structure.3 In the former, the arbitrariness leads to a lack of physical transparency
in TB models and increases the number of independent parameters that need to be used, whereas in the
latter case this could lead to problems in calculating the charges for nanostructured systems or systems with
non-equivalent basis atoms. In order to avoid nonphysical results due to large charge transfers, imposing a
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Table S2 Tight-binding parameter set for 1ML MoS2 as proposed in Refs.8,29, referred to as TB set 2 in Sec. 3.2. Cappelluti et al. also
proposed two additional parameters to model the lowest conduction band and the highest valence band of bulk MoS2 (see text).

On-site energies (in eV) Spin-orbit parameter (in eV)
S Mo S Mo

Epx = Epy -1.276 0.000 λ 0.052 0.075
Epz -8.236 0.000
Edxy = Edx2−y2 0.000 -3.025
Edxz = Edyz 0.000 0.419
Ed3z2−r2 0.000 -1.512

Slater-Koster energy integrals (in eV)
intra-layer inter-layer
S-S S-Mo Mo-S Mo-Mo S-S

Vppσ 0.696 0.000 0.000 0.000 -0.774
Vppπ 0.278 0.000 0.000 0.000 0.123
Vpdσ 0.000 -2.619 -2.619 0.000 -
Vpdπ 0.000 -1.396 -1.396 0.000 -
Vddσ 0.000 0.000 0.000 -0.933 -
Vddπ 0.000 0.000 0.000 0.478 -
Vddδ 0.000 0.000 0.000 -0.442 -

constraint for the charge becomes necessary.3,32

This problem originates from the non-self-consistent nature of the potential. In ab initio calculations,
the Hamiltonian is solved self-consistently and a quasi-charge neutrality of each atom is found.31 In a
parametrized TB model the charge density is not known and the self-consistency problem cannot be solved
without introducing new parameters describing Coulomb interactions between electrons.3

Keeping in mind that TB model should be, from one side as simple as possible to be used to calculate
the electronic, optical, and transport properties of complex nanostructured materials, and from the other,
to capture all the relevant microscopic features of materials, two paths for fixing local charge neutrality
issue were proposed: (i) to introduce self-consistency in order to correctly represent charge transfer ef-
fects in non-bulk-like bonding environments; the on-site energies are shifted until the system reaches a
stable equilibrium with respect to the charges, the local charge neutrality constraint. (ii) local environ-
ment dependent on-site energy levels are introduced into the TB parametrization, typically orthogonal TB
parameters-scheme, but also including intra-atomic interactions.3

One problem with introducing self-consistency are additional parameters, as well as increased compu-
tational time. That is why option (ii) sounded appealing; it was shown that this maximized the flexibility
of the scheme for a wide range of applications, e.g., it gives a good description of electronic properties of
nanostructured metal-based systems.3,33 Of course, further improvement would use self-consistent charge
density-functional based TB method, see, e.g., Refs.34,35.

Our approach: TB parameter set used in this work (Refs.5,6) provide good description of the band
structure of 1ML, 2ML, and bulk MoS2 (see Sec. 3, including Fig. 2, Table 1 and Table 2, in the main body
of the manuscript). Thus, the case where surface atoms (S-atoms) in 1ML of MoS2 have different local
environment compared to the bulk case is included in the TB parametrization.6

Furthermore, for nanostructured MoS2 materials, our results show good agreement with the findings
extracted from DFT-based calculations. Specifically, our results on DOS of nanodisks agree with those
extracted from DFT calculations in Ref.27, discussed throughout Sec. 4 in the main body of the manuscript.
Also, we run test case for the band structure of nanoribbons as defined in Ref.36, and found good agree-
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Table S3 Tight-binding parameter set for 1ML MoS2 as proposed in Ref.30, referred to as TB set 3 in Sec. 3.2.

On-site energies (in eV) Spin-orbit parameter (in eV)
S Mo S Mo

Epx = Epy -54.839 0.000 λ 0.00052 0.075
Epz -39.275 0.000
Edxy = Edx2−y2 0.000 -0.352
Edxz = Edyz 0.000 -1.563
Ed3z2−r2 0.000 0.201

Slater-Koster energy integrals (in eV)
intra-layer inter-layer
S-S S-Mo Mo-S Mo-Mo S-S

Vppσ 12.734 0.000 0.000 0.000 -
Vppπ -2.175 0.000 0.000 0.000 -
Vpdσ 0.000 -9.880 -9.880 0.000 -
Vpdπ 0.000 4.196 4.196 0.000 -
Vddσ 0.000 0.000 0.000 -1.153 -
Vddπ 0.000 0.000 0.000 0.612 -
Vddδ 0.000 0.000 0.000 0.086 -

ment. Finally, we have not found any non-physical solutions. We remind the reader that in this work we
are focused on identifying universal features in the electronic structure, and not on influence of specific
structural features because they either could not be detected in structural characterization or they cannot be
captured by our present model (see additional discussion in Sec. S1 and S4). We stress here, as we do in the
main body of the manuscript, for detailed modeling of edge effects, one would need to use more complex
models, e.g. within TB approximation, self-consistent charge density-functional based TB method.

As a side note, when comparing our results with those extracted using TB parameter sets TB set 2 and
TB set 3 [Sec.3.2 and Fig. 3 in the main body of the manuscript], we see that those parameter sets are not
transferable; they are limited only to 1ML. For example, the proposed additional two parameters in TB set 2
[see also Sec. S2] for the description of the band structure of bulk MoS2, provided a reasonable description
of the band structure only around K point.

S4 Model structures of nanostructured MoS2 materials: Structure from experiment versus theory

In our model structures we use optimized unreconstructed edges. Our model structures are constructed
taking into account experimental findings (see below) and other theoretical models (for nanoribbons in
Ref.36 and nanodisks in Ref.27).

Regarding model structures versus structural characterization, we note that in the experimental situations
additional factors often come into play, such as for example substrate effects, possible existence of addi-
tional sulfur and/or hydrogen,36,37 etc. Whereas STM images were matched to numerical calculations,26,27

challenges in characterizing the edge structures experimentally, prevent us from determining how MoS2
edges reconstruct. For additional discussion see e.g., Refs.36,37

Nanowires: the width dwire is calculated using formula: dwire ≈ (a/
√

3)nhex, where nhex represents
approximate number of hexagon side lengths included in the width of the nanowire.

Nanodisks: Nanodisks are characterized by the number of Mo and S atoms, as well as the number (N)
of Mo atoms on the edge of nanodisks, which gives edge length d = (N−1)alatt , alatt = 3.179Å.
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Specifically,
For nanodisks in Fig. 7(a) top panel:
disk 1: Mo132S312 and N = 11
disk 2: Mo121S334 and N = 11
disk 3: Mo96S254 and N = 11

For nanodisks in Fig. 7(a) bottom panel:
disk 1 (d1 = d2): Mo36S112 and N = 6
disk 1 (d1 < d2): Mo186S512 and N1 = 6, N2 = 31
disk 1 (d1 > d2): Mo126S322 and N1 = 21, N2 = 6

For nanodisk in Figs. 8 and 9:
disk 1: Mo36S112 and N = 6

S5 Additional results on electronic properties of MoS2 nanostructured materials

In the main body of the manuscript we discussed how electronic and optical properties of nanostructured
MoS2 materials are influenced by reducing spatial dimensions and edge effects. In this Section of Electronic
Supplementary Information we provide additional results on DOS of MoS2-based nanowires and disks.

Electronic properties of MoS2 nanowires

Figure S1 shows how calculated DOS of nanowires is affected by edge effects depending on the size (dwire)
of the wire.

For a nanowire with dwire = 2.9 nm the difference in edge atoms [see Fig. 4(a)] is reflected in DOS.
However, as intuitively expected, with increasing size of the wire the influence of the edge of DOS is
reduced. It turns out that for a nanowire size dwire = 9.2 nm, role of edge “decoration” on DOS becomes
negligible.

As a test of our calculations, Figure S2 demonstrates how calculated DOS changes with increasing dwire
and for dwire = 31.5 nm resembles DOS of MoS2 1ML sheet.

Electronic properties of MoS2 nanodisks

As it was discussed in Ref.26 and in the main body of the manuscript, resolving edge states is very tricky
and requires combination of input from DFT as well as experimentally obtained STM images. Further
complication could be introduced by potential surface defects, i.e., S atoms missing.

Figure S3 shows calculated DOS of the disk1 with d = 1.59 nm (N = 6) as it changes in the presence of
surface defects; defect I is 2S atoms missing from the right edge and defect II – 2S atoms missing from the
top right corner of the disk. Fig. S3(b) shows zoomed in DOS around Fermi energy.

We see that here considered surface defects introduce variations in EF less than 30 meV for disk1
Mo36S96 vs Mo36S94. The changes however do not influence “visibility” of disks in a STM image; as
seen in Fig. S3(b), EF for different surface defects still reside near a local maximum in DOS. Given that
here we are focused on “more universal” robust effects that are not limited to special cases, we consider
scenarios where one or two whole edges of nanodisk lacking S atoms.
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Fig. S1 Calculated density of states (DOS) for nanowires of size dwire = 2.9 nm and dwire = 9.2 nm with different number of monolayers and
different edge-types [type i, type ii, and type iii, as shown in Fig. 4(a)].
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Fig. S2 Calculated DOS for nanowires of size dwire = 15.6 nm and dwire = 31.5 nm as they compare with calculated DOS for 1ML sheet
MoS2.

Fig. S3 (a) Calculated DOS of the disk1 with d = 1.59 nm as it changes in the presence of surface defects; defect I is 2S atoms missing from
the right edge and defect II – 2S atoms missing from the top right corner of the disk; (b) shows zoomed in DOS around Fermi energy.
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Fig. S4 (a) nano-disk with d = 1.59 nm; (i)-(iv) denote edges of the disk. (b) Calculated DOS for nano-disk as we vary S coverage on edges;
from top to bottom: S-edge – 100% S coverage on all four edges; S-Mo (type I) – 100% S coverage on edges (i), (iii), and (iv), and S-atoms
removed from the edge (ii); S-Mo (type II) – 100% S coverage on the edges (iii) and (iv), S-atoms removed from the edges (i) and (ii); and
Mo-edge – S-atoms removed from all four edges.

Figure S4 shows calculated DOS of a nanodisk with d = 1.59 nm [see also Fig. 1(c) in the main body
of the manuscript] as it varies with atom-types on edges [(i)-(iv)] of the disk. Following edge-types are
analyzed: S-edge – 100% S coverage on all four edges; S-Mo (type I) – 100% S coverage on edges (i), (iii),
and (iv), and S-atoms removed from the edge (ii); S-Mo (type II) – 100% S coverage on the edges (iii) and
(iv), S-atoms removed from the edges (i) and (ii); and Mo-edge – S-atoms removed from all four edges.

As discussed in the manuscript, valence states originate from p-orbitals of S-atoms, mainly at the inter-
face, and conduction states from d-orbitals of Mo atoms. With changing a “decoration” at the edges of the
disk, we are influence density of states in valence and conduction band. Given that valence band is mainly
determined by the S atoms at the interface, we see that in the hypothetical case of Mo-edge, valence band
states are almost completely suppressed.

Next, in Fig. S4(b), DOS for S-edge and S-Mo edge (type I) exhibit peak caused by Mo atoms terminated
by S dimers on the edge, see also the discussion in the main body of the manuscript. For nano-disks with
S-Mo edge (type II) this peak reduces and finally disappears for Mo-edge case.
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