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1 Experimental Procedure 

A 20 mL window autoclave has been applied with two ATR-IR fibre optical probes with two internal 

reflection elements from ifs Aachen. One probe is applied for the lower liquid phase, one for the 

upper gaseous phase. After recording a reference spectrum against air, the solvent methanol and the 

substrates triethylamine and dimethyl carbonate are inserted and the autoclave is sealed. While con-

tinuously recording spectra of upper and lower phase in an alternating manner, the autoclave is 

heated up to reaction temperature. The reaction is terminated after several hours. The chilled prod-

uct phase is purified via removing the volatile components under vacuum. 

Table 1: List of used reaction temperatures. The graphs of Experiment No. OHL-056 have also been 

shown in the communication. 

Experiment No. Temperature T [K] 

OHL-057 363.15 

OHL-069 378.15 

OHL-068 388.15 

OHL-067 393.15 

OHL-056 398.15 

OHL-064 398.15 

OHL-066 398.15 

OHL-060 403.15 

OHL-054 408.15 

OHL-061 413.15 

 

Table 2: Weights, amounts and volumes of the substrates and the solvent. 

 Methanol Triethylamine Dimethyl carbonate 

Molar fraction 0.60 0.20 0.20 

Mass [g] 4.18 4.40 3.92 

Volume [mL] 5.30 6.03 3.67 

Amount [mmol] 130 43.5 43.5 
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Figure 1: Pictures of the reaction mixture through the autoclave window at the beginning (left) and 

after two hours reaction time (right) of OHL-054. The decreasing gauge of the liquid phase emphasiz-

es that the density increases with the reaction progress. The pictures have been taken with a BS-19+ 

USB-endoscope (Voltcraft). 
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 NMR-Spectrum of the Product 1.1

 

Figure 2: NMR spectrum of MeNEt3 MeOCOO. 

1H-NMR (400 MHz, CDCl3) δ 1.30 ppm (t, 3J = 12 Hz, 9 H, CH3(Et in MeNEt3
+)), 3.09 ppm (s, 3 H, 

CH3(Me in MeNEt3
+)), 3.34 ppm (s, 3 H, CH3(MeOCOO-)), 3.44 ppm (q, 3J = 12 Hz, 6 H, CH2(Et in 

MeNEt3
+)), 3.44 ppm (s, 3 H, CH3(MeOH)). 
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2 Model and Calibration 

 Reference Spectra 2.1

 

Figure 3: v(H3C-O) stretching vibration of methanol[1]. 

 

Figure 4: mIR spectrum of methanol. The marked v(H3C-O) band is used for the peak integration 

model, though it is overlapping with the peaks of the other substances. The high absorbance of this 

peak still allows integrating the central part of the peak. 
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Figure 5: δ(NC3) deformation vibration of triethylamine[1]. 

Figure 6: mIR spectrum of triethylamine. The overall low absorbance of the spectrum has to be con-

sidered. The marked band is used for the peak integration model, as it is located isolated. 
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Figure 7: v(C=O) stretching vibration of dimethyl carbonate[1]. 

 

Figure 8: mIR spectrum of dimethyl carbonate. The marked band is used for the peak integration 

model, as it is located isolated. 

ν(C=O) 
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Figure 9: v(C=O) stretching vibration of monomethyl carbonate[1]. 

 

Figure 10: mIR spectrum of MeNEt3 MeOCOO in methanol. The marked band is used for the peak 

integration model, as it is located isolated. 

  

+ cation 
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 Peak Integration Model 2.2

 

Figure 11: Peak integration model for mixtures of methanol, triethylamine, dimethyl carbonate and 

MeNEt3 MeOCOO. 

 Calibration 2.3

 

Figure 12: Predicted vs. true plots for dimethyl carbonate (a), methanol (b), MeNEt3 MeOCOO (c) and 

triethylamine (d). Calibration samples (green symbols) are binary mixtures for each component with 

methanol while validation samples (blue symbols) consist of quaternary mixtures of all components. 

a b 

c d 
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Table 3: RMSECV and RMSEP values of the peak integration model. 

Substance RMSECV [mol L-1] RMSEP [mol L-1] 

Methanol 1.88 0.93 

Dimethyl carbonate 0.026 0.14 

Triethylamine 0.12 0.21 

MeNEt3 MeOCOO 0.065 0.044 

  



Chapter 3 - Results 

 

 

10 

3 Results 

 IR Spectra 3.1

 

Figure 13: 2D plot (left) and 3D plot (right) of time-resolved mIR spectra of the reaction mixture at 

90 °C (Exp. No. OHL-057). 

   

Figure 14: 2D plot (left) and 3D plot (right) of time-resolved mIR spectra of the reaction mixture at 

105 °C (Exp. No. OHL-069). 
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Figure 15: 2D plot (left) and 3D plot (right) of time-resolved mIR spectra of the reaction mixture at 

115 °C (Exp. No. OHL-068). 

  

Figure 16: 2D plot (left) and 3D plot (right) of time-resolved mIR spectra of the reaction mixture at 

120 °C (Exp. No. OHL-067). 
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Figure 17: 2D plot (left) and 3D plot (right) of time-resolved mIR spectra of the reaction mixture at 

125 °C (Exp. No. OHL-056). 

  

Figure 18: 2D plot (left) and 3D plot (right) of time-resolved mIR spectra of the reaction mixture at 

125 °C (Exp. No. OHL-064). 
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Figure 19: 2D plot (left) and 3D plot (right) of time-resolved mIR spectra of the reaction mixture at 

125 °C (Exp. No. OHL-066). 

  

Figure 20: 2D plot (left) and 3D plot (right) of time-resolved mIR spectra of the reaction mixture at 

125 °C (Exp. No. OHL-060). 
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Figure 21: 2D plot (left) and 3D plot (right) of time-resolved mIR spectra of the reaction mixture at 

135 °C (Exp. No. OHL-054). 

  

Figure 22: 2D plot (left) and 3D plot (right) of time-resolved mIR spectra of the reaction mixture at 

140 °C (Exp. No. OHL-061). 
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 Concentration and Reaction Rate Profiles 3.2

 

Figure 23: Concentration profiles of solvent, substrates and product determined via Peak Integration 

at 90 °C (Exp. No. OHL-057). The discontinuity in the triethylamine profile at about 4 h corresponds to 

refilling of liquid nitrogen which interferes with the relatively small signal of this compound. 

 

Figure 24: Reaction rate profiles of the product computed via numerical differentiation with an inter-

val length of 12 min at 90 °C (Exp. No. OHL-057). In this experiment, the critical ionic liquid concen-

tration has not been reached in reaction time. 
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Figure 25: Concentration profile of the product (blue) compared with the re-integrated reaction rate 

of Fig. 24 (red). The similar shape of both graphs confirms the correctness of the numerical differen-

tiation. 

 

Figure 26: Concentration profiles of solvent, substrates and product determined via Peak Integration 

at 105 °C (Exp. No. OHL-069). The fluctuation of the methanol concentration at 3 h indicates a phase 

change. The discontinuity in the triethylamine profile at about 3.2 h corresponds to refilling of liquid 

nitrogen which interferes with the relatively small signal of this compound. 
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Figure 27: Reaction rate profiles of the product computed via numerical differentiation with an inter-

val length of 12 min at 105 °C (Exp. No. OHL-069). In this experiment, the critical ionic liquid concen-

tration has been reached at 2.9 h. 

 

Figure 28: Concentration profile of the product (blue) compared with the re-integrated reaction rate 

of Fig. 27 (red). The similar shape of both graphs confirms the correctness of the numerical differen-

tiation. 
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Figure 29: Concentration profiles of solvent, substrates and product determined via Peak Integration 

at 115 °C (Exp. No. OHL-068). The increase of methanol concentration at 1.8 h indicates a phase 

change. The discontinuity in the triethylamine profile at about 2.3 h corresponds to refilling of liquid 

nitrogen which interferes with the relatively small signal of this compound. 

 

Figure 30: Reaction rate profiles of the product computed via numerical differentiation with an inter-

val length of 12 min at 115 °C (Exp. No. OHL-068). In this experiment, the critical ionic liquid concen-

tration has been reached at 1.8 h. 
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Figure 31: Concentration profile of the product (blue) compared with the re-integrated reaction rate 

of Fig. 30 (red). The similar shape of both graphs confirms the correctness of the numerical differen-

tiation. 

 

Figure 32: Concentration profiles of solvent, substrates and product determined via Peak Integration 

at 120 °C (Exp. No. OHL-067). The increase of methanol concentration at 1.2 h indicates a phase 

change. The discontinuity in the triethylamine profile at about 2.7 h corresponds to refilling of liquid 

nitrogen which interferes with the relatively small signal of this compound. 
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Figure 33: Reaction rate profiles of the product computed via numerical differentiation with an inter-

val length of 12 min at 120 °C (Exp. No. OHL-067). In this experiment, the critical ionic liquid concen-

tration has been reached at 1.2 h. 

 

Figure 34: Concentration profile of the product (blue) compared with the re-integrated reaction rate 

of Fig. 33 (red). The similar shape of both graphs confirms the correctness of the numerical differen-

tiation. 
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Figure 35: Concentration profiles of solvent, substrates and product determined via Peak Integration 

at 125 °C (Exp. No. OHL-056). The increase of methanol concentration at 1.1 h indicates a phase 

change. 

 

Figure 36: Reaction rate profiles of the product computed via numerical differentiation with an inter-

val length of 15.6 min at 125 °C (Exp. No. OHL-056). In this experiment, the critical ionic liquid con-

centration has been reached at 1.1 h. 
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Figure 37: Concentration profile of the product (blue) compared with the re-integrated reaction rate 

of Fig. 36 (red). The similar shape of both graphs confirms the correctness of the numerical differen-

tiation. 

 

Figure 38: Concentration profiles of solvent, substrates and product determined via Peak Integration 

at 125 °C (Exp. No. OHL-064). The increase of methanol concentration at 1.0 h indicates a phase 

change. The discontinuity in the triethylamine profile at about 3.9 h corresponds to refilling of liquid 

nitrogen which interferes with the relatively small signal of this compound. 
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Figure 39: Reaction rate profiles of the product computed via numerical differentiation with an inter-

val length of 12 min at 125 °C (Exp. No. OHL-064). In this experiment, the critical ionic liquid concen-

tration has been reached at 1.0 h. 

 

Figure 40: Concentration profile of the product (blue) compared with the re-integrated reaction rate 

of Fig. 39 (red). The similar shape of both graphs confirms the correctness of the numerical differen-

tiation. 
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Figure 41: Concentration profiles of solvent, substrates and product determined via Peak Integration 

at 125 °C (Exp. No. OHL-066). The increase of methanol concentration at 0.8 h indicates a phase 

change. The discontinuity in the triethylamine profile at about 2.8 h corresponds to refilling of liquid 

nitrogen which interferes with the relatively small signal of this compound. 

 

Figure 42: Reaction rate profiles of the product computed via numerical differentiation with an inter-

val length of 12 min at 125 °C (Exp. No. OHL-066). In this experiment, the critical ionic liquid concen-

tration has been reached at 0.8 h. 
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Figure 43: Concentration profile of the product (blue) compared with the re-integrated reaction rate 

of Fig. 42 (red). The similar shape of both graphs confirms the correctness of the numerical differen-

tiation. 

 

Figure 44: Concentration profiles of solvent, substrates and product determined via Peak Integration 

at 130 °C (Exp. No. OHL-060). The increase of methanol concentration at 0.7 h indicates a phase 

change. The discontinuity in the triethylamine profile at about 4.6 h corresponds to refilling of liquid 

nitrogen which interferes with the relatively small signal of this compound. 
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Figure 45: Reaction rate profiles of the product computed via numerical differentiation with an inter-

val length of 6 min at 130 °C (Exp. No. OHL-060). In this experiment, the critical ionic liquid concen-

tration has been reached at 0.7 h. 

 

Figure 46: Concentration profile of the product (blue) compared with the re-integrated reaction rate 

of Fig. 45 (red). The similar shape of both graphs confirms the correctness of the numerical differen-

tiation. 
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Figure 47: Concentration profiles of solvent, substrates and product determined via Peak Integration 

at 135 °C (Exp. No. OHL-054). The increase of methanol concentration at 0.6 h indicates a phase 

change. The discontinuity in the triethylamine profile at about 3.3 h corresponds to refilling of liquid 

nitrogen which interferes with the relatively small signal of this compound. 

 

Figure 48: Reaction rate profiles of the product computed via numerical differentiation with an inter-

val length of 12 min at 135 °C (Exp. No. OHL-054). In this experiment, the critical ionic liquid concen-

tration has been reached at 0.6 h. 
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Figure 49: Concentration profile of the product (blue) compared with the re-integrated reaction rate 

of Fig. 48 (red). The similar shape of both graphs confirms the correctness of the numerical differen-

tiation. 

 

Figure 50: Concentration profiles of solvent, substrates and product determined via Peak Integration 

at 140 °C (Exp. No. OHL-061). The increase of methanol concentration at 0.3 h indicates a phase 

change. 
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Figure 51: Reaction rate profiles of the product computed via numerical differentiation with an inter-

val length of 12 min at 140 °C (Exp. No. OHL-061). In this experiment, the critical ionic liquid concen-

tration has been reached at 0.7 h. 

 

Figure 52: Concentration profile of the product (blue) compared with the re-integrated reaction rate 

of Fig. 51 (red). The similar shape of both graphs confirms the correctness of the numerical differen-

tiation. 
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 Kinetic Modeling 3.3

3.3.1 Parallel Reaction Model 

The reaction rate coefficient kapp has been calculated by dividing the reaction rate r by the substrate 

concentrations c(DMC) and c(NEt3) (Eq.1). 

𝑘𝑎𝑝𝑝 =
𝑟

𝑐(𝐷𝑀𝐶) ∙ 𝑐(𝑁𝐸𝑡3)
 

(1) 

 

 

Figure 53: Plot of the reaction rate coefficient kapp vs. the product concentration c(IL) at 90 °C (Exp. 

No. OHL-057). The data points have been endowed with a linear fit function. 
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Figure 54: Plot of the reaction rate coefficient kapp vs. the product concentration c(IL) at 105 °C (Exp. 

No. OHL-069). The data points have been endowed with a linear fit function for the sections before 

and after the critical concentration. 

 

Figure 55: Plot of the reaction rate coefficient kapp vs. the product concentration c(IL) at 115 °C (Exp. 

No. OHL-068). The data points have been endowed with a linear fit function for the sections before 

and after the critical concentration. A positive curvature is apparent before and after the critical con-

centration. 
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Figure 56: Plot of the reaction rate coefficient kapp vs. the product concentration c(IL) at 120 °C (Exp. 

No. OHL-067). The data points have been endowed with a linear fit function for the sections before 

and after the critical concentration. 

 

Figure 57: Plot of the reaction rate coefficient kapp vs. the product concentration c(IL) at 125 °C (Exp. 

No. OHL-056). The data points have been endowed with a linear fit function for the sections before 

and after the critical concentration. 
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Figure 58: Plot of the reaction rate coefficient kapp vs. the product concentration c(IL) at 125 °C (Exp. 

No. OHL-064). The data points have been endowed with a linear fit function for the sections before 

and after the critical concentration. 

 

Figure 59: Plot of the reaction rate coefficient kapp vs. the product concentration c(IL) at 125 °C (Exp. 

No. OHL-066). The data points have been endowed with a linear fit function for the sections before 

and after the critical concentration. 
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Figure 60: Plot of the reaction rate coefficient kapp vs. the product concentration c(IL) at 130 °C (Exp. 

No. OHL-060). The data points have been endowed with a linear fit function for the sections before 

and after the critical concentration. 

 

Figure 61: Plot of the reaction rate coefficient kapp vs. the product concentration c(IL) at 135 °C (Exp. 

No. OHL-054). The data points have been endowed with a linear fit function for the sections before 

and after the critical concentration. 
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Figure 62: Plot of the reaction rate coefficient kapp vs. the product concentration c(IL) at 140 °C (Exp. 

No. OHL-061). The data points have been endowed with a linear fit function for the sections before 

and after the critical concentration. 

3.3.2 Salting-Out Effect 

 

Figure 63: Plot of the logarithmised reaction rate coefficient ln(kapp) vs. the product concentration 

c(IL) at 90 °C (Exp. No. OHL-057). The data points have been endowed with a linear fit function. 
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Figure 64: Plot of the logarithmised reaction rate coefficient ln(kapp) vs. the product concentration 

c(IL) at 105 °C (Exp. No. OHL-069). The data points have been endowed with a linear fit function for 

the sections before and after the critical concentration. 

 

Figure 65: Plot of the logarithmised reaction rate coefficient ln(kapp) vs. the product concentration 

c(IL) at 115 °C (Exp. No. OHL-068). The data points have been endowed with a linear fit function for 

the sections before and after the critical concentration. 
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Figure 66: Plot of the logarithmised reaction rate coefficient ln(kapp) vs. the product concentration 

c(IL) at 120 °C (Exp. No. OHL-067). The data points have been endowed with a linear fit function for 

the sections before and after the critical concentration. 

 

Figure 67: Plot of the logarithmised reaction rate coefficient ln(kapp) vs. the product concentration 

c(IL) at 125 °C (Exp. No. OHL-056). The data points have been endowed with a linear fit function for 

the sections before and after the critical concentration. 
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Figure 68: Plot of the logarithmised reaction rate coefficient ln(kapp) vs. the product concentration 

c(IL) at 125 °C (Exp. No. OHL-064). The data points have been endowed with a linear fit function for 

the sections before and after the critical concentration. 

 

Figure 69: Plot of the logarithmised reaction rate coefficient ln(kapp) vs. the product concentration 

c(IL) at 125 °C (Exp. No. OHL-066). The data points have been endowed with a linear fit function for 

the sections before and after the critical concentration. 
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Figure 70: Plot of the logarithmised reaction rate coefficient ln(kapp) vs. the product concentration 

c(IL) at 130 °C (Exp. No. OHL-060). The data points have been endowed with a linear fit function for 

the sections before and after the critical concentration. 

 

Figure 71: Plot of the logarithmised reaction rate coefficient ln(kapp) vs. the product concentration 

c(IL) at 135 °C (Exp. No. OHL-054). The data points have been endowed with a linear fit function for 

the sections before and after the critical concentration. 
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Figure 72: Plot of the logarithmised reaction rate coefficient ln(kapp) vs. the product concentration 

c(IL) at 140 °C (Exp. No. OHL-061). The data points have been endowed with a linear fit function for 

the sections before and after the critical concentration. 
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determination of δmean mentioned above distort the shape of the curves. Furthermore, the general 

assumption of regular solution theory is that the compounds of a mixture behave as in pure sub-

stance and do not interact with each other. The polar solvent methanol and the produced ionic liquid 

definitely interact and thereby contradict this assumption. Additional terms which describe the inter-

actions in the mixture could possibly reproduce the experimental data better. 

𝛿𝑖 = √
∆𝑣𝑎𝑝𝐻𝑖 − 𝑅𝑇

𝑉𝑚,𝑖
≈ √

∆𝑣𝑎𝑝𝐻𝑖

𝑉𝑚,𝑖
 (2) 

𝑅𝑇𝑙𝑛(𝛾𝑖) = 𝑉𝑚,𝑖(𝛿 − 𝛿𝑚𝑒𝑎𝑛)² (3) 

𝑘𝑎𝑝𝑝 = 𝑘0
′′

𝛾(𝐷𝑀𝐶) ∙ 𝛾(𝑁𝐸𝑡3)

𝛾(𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑠𝑡𝑎𝑡𝑒)
 (4) 

ln (𝑘𝑎𝑝𝑝) = ln (𝑘0
′′) + ∑ ln (𝛾𝑖

𝑣𝑖)
𝑖

 (5) 

ln(𝑘𝑎𝑝𝑝) = ln(𝑘0
′′) + 𝑎1𝛿𝑚𝑒𝑎𝑛

2 + 𝑎2 ∙ 𝛿𝑚𝑒𝑎𝑛 + 𝑎3 (6) 

 

 

Figure 73: Plot of the logarithmised reaction rate coefficient ln(kapp) vs. the averaged Hildebrand pa-

rameter δmean at 90 °C (Exp. No. OHL-057). Because of the strong scattering of the data points, the 

usage of a fit function is renounced. 
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Figure 74: Plot of the logarithmised reaction rate coefficient ln(kapp) vs. the averaged Hildebrand pa-

rameter δmean at 105 °C (Exp. No. OHL-069). Because of the strong scattering of the data points, the 

usage of a fit function is renounced. 

 

Figure 75: Plot of the logarithmised reaction rate coefficient ln(kapp) vs. the averaged Hildebrand pa-

rameter δmean at 115 °C (Exp. No. OHL-068). The data points have been endowed with a linear fit 

function for the sections before and after the critical concentration. 
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Figure 76: Plot of the logarithmised reaction rate coefficient ln(kapp) vs. the averaged Hildebrand pa-

rameter δmean at 120 °C (Exp. No. OHL-067). The data points have been endowed with a linear fit 

function for the sections before and after the critical concentration. 

 

Figure 77: Plot of the logarithmised reaction rate coefficient ln(kapp) vs. the averaged Hildebrand pa-

rameter δmean at 125 °C (Exp. No. OHL-056). The data points have been endowed with a linear fit 

function for the sections before and after the critical concentration. 
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Figure 78: Plot of the logarithmised reaction rate coefficient ln(kapp) vs. the averaged Hildebrand pa-

rameter δmean at 125 °C (Exp. No. OHL-064). The data points have been endowed with a linear fit 

function for the sections before and after the critical concentration. 

 

Figure 79: Plot of the logarithmised reaction rate coefficient ln(kapp) vs. the averaged Hildebrand pa-

rameter δmean at 125 °C (Exp. No. OHL-066). The data points have been endowed with a linear fit 

function for the sections before and after the critical concentration. 
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Figure 80: Plot of the logarithmised reaction rate coefficient ln(kapp) vs. the averaged Hildebrand pa-

rameter δmean at 130 °C (Exp. No. OHL-060). The data points have been endowed with a linear fit 

function for the sections before and after the critical concentration. 

 

Figure 81: Plot of the logarithmised reaction rate coefficient ln(kapp) vs. the averaged Hildebrand pa-

rameter δmean at 135 °C (Exp. No. OHL-054). The data points have been endowed with a linear fit 

function for the sections before and after the critical concentration. 
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Figure 82: Plot of the logarithmised reaction rate coefficient ln(kapp) vs. the averaged Hildebrand pa-

rameter δmean at 140 °C (Exp. No. OHL-061). The data points have been endowed with a linear fit 

function for the sections before and after the critical concentration. 
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