Supplementary Information Influence of temperature gradients on charge transport in asymmetric nanochannels

Anne M. Benneker, Hans David Wendt, Rob G.H. Lammertink, and Jeffery A.

 Wood^*

Soft Matter, Fluidics and Interfaces, Faculty of Science and Technology, University of Twente, The Netherlands

E-mail: j.a.wood@utwente.nl

S1. Temperature dependence of physical properties

Permittivity data was obtained from.¹ The diffusion coefficients are based on molar conductivity data of Benson and Gordon² and converted to diffusion coefficients by $D_i = (RT\Lambda)/(z^2F^2)$. Viscosity and thermal conductivity were obtained from the NIST Chemistry Webbook.³ All values are 1 at T_0 of 293 K and increase or decrease with θ , dimensionless temperature $(T - T_0)/T_0$.

> $\epsilon_r = 1 - 1.2984\theta$ $D_1 = 1 + 8.4585\theta$ $D_2 = 1 + 8.8466\theta$ $\mu = \exp(-6.46\theta)$ $k = 1 + 0.8098\theta$

S2. Boundary conditions for simulations

The boundary conditions below are used for the corresponding boundaries as shown in Figure 1 of the manuscript, which are identical to the boundary conditions previously used.^{4,5}

\mathbf{AB}

Dirichlet/Constant value for φ , θ and c_i

 $\varphi = V_0 / V_{\text{ref}} \text{ or } 0$ $\theta = \theta_{\text{left}}$ $c_i = 1$ Zero flux for ψ $\mathbf{n} \cdot (\epsilon_r \nabla \psi) = 0$ Open Boundary for Velocity $[-p\mathbf{I} + \mu \nabla \bar{u}]\mathbf{n} = 0$

$\mathbf{B}\mathbf{C}$ and $\mathbf{F}\mathbf{G}$

Symmetry/No normal velocity component Insulating/Zero Flux for θ, c_i, φ and ψ

$\mathbf{C}\mathbf{D}$ and $\mathbf{E}\mathbf{F}$

No-slip for velocity ($\bar{u} = 0$) Insulating/Zero Flux for θ and c_i

\mathbf{DE}

 $\psi = V_{\text{wall}}/V_{\text{ref}}$ No-slip for velocity ($\bar{u} = 0$) Insulating/Zero Flux for θ, c_i and φ

\mathbf{GH}

Dirichlet/Constant value for φ , θ and c_i $\varphi = V_0/V_{ref}$ or 0 $\theta = \theta_{right}$ $c_i = 1$ Zero flux for ψ $\mathbf{n} \cdot (\epsilon_r \nabla \psi) = 0$ Open Boundary for Velocity $[-p\mathbf{I} + \mu \nabla \bar{u}]\mathbf{n} = 0$

\mathbf{AH}

Symmetry conditions

References

- Kaatze, U. Complex permittivity of water as a function of frequency and temperature.
 J. Chem. Eng. Data 1989, 34, 371–374.
- (2) Benson, G. C.; Gordon, A. R. A reinvestigation of the conductance of aqueous solutions of potassium chloride, sodium chloride, and potassium bromide at Temperatures from 15 to 45 C. J.Chem. Phys. 1945, 13, 89–91.
- (3) Lemmon, E.; McLinden, M.; Friend, D. Thermophysical Properties of Fluid Systems. http://webbook.nist.gov/, In NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Eds. P.J. Linstrom and W.G. Mallard, National Institute of Standards and Technology, Gaithersburg MD, 20899. Retrieved May 4, 2016.
- (4) Wood, J. A.; Benneker, A. M.; Lammertink, R. G. Temperature effects on the elec-

trohydrodynamic and electrokinetic behaviour of ion-selective nanochannels. J. Phys.: Condens. Matter 2016, 28, 114002.

(5) Zhao, C.; Yang, C. Ion transport and selection through DCGC-based electroosmosis in a conducting nanofluidic channel. *Microfluid. Nanofluid.* 2014, 18, 785.