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Computational Methodology

To estimate whether a dendritic protrusion will grow into a complete dendrite or not, the 

reaction current at the peak  and the valley  is determined. The magnitude of ipeak  ivalley 

reaction current is calculated using the modified version of the Butler-Volmer equation1, 2. This 

relation has contributions from mechanical stress, concentration and potential within both lithium 

metal and electrolyte. Hence, it is necessary to solve for the mechanical deformation, potential 

distribution and concentration profile within both lithium and electrolyte phases. In the present 

work, PEO-based electrolytes have been considered because of their ability to potentially 

suppress the growth of lithium dendrites. Since, elastic-plastic deformation of lithium metal and 

PEO-based electrolyte is a common phenomenon, a proper nonlinear stress-strain relation has 

been used to calculate the generation of stress3-6. Lithium ion concentration-dependent 

conductivity of the polymer electrolyte has been taken into account7. However, a fixed value of 

lithium ion diffusivity within the electrolyte phase has been used here. This leads to easier 

estimation of the limiting current density. In the present analysis, primary current induced by 

potential gradients, secondary current induced by electrode kinetics, and tertiary current induced 

by concentration gradients have been taken into consideration8. Detailed descriptions of these 

governing differential equations, along with the appropriate boundary conditions, are given 

below.

Starting from a relaxed (stress-free) configuration of the lithium metal and dendritic 

protrusion, the electrolyte phase has been lowered into contact with the lithium metal9. The 

bottom of the lithium region has been kept fixed. This constraint induces compressive force 

within the lithium metal, electrolyte phase, and the newly-deposited dendritic protrusion. 

Depending on the stress generated during the compression process, plastic deformation within 
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both lithium metal and electrolyte is possible. Plasticity of lithium combined with a very stiff 

separator leads to a modified protrusion height10, 11. Symmetric boundary conditions have been 

applied on the left and right sides of the domain, constraining the displacement along the 

horizontal (x) direction and allowing for free movement along the vertical (z) direction.

Schematic representations of the lithium/electrolyte domain considered in the present 

analysis are provided in Figure S1. The mesh for the undeformed lithium metal is shown in 

Figure S1(a). No deformation in either the x or z directions is allowed at the bottom of this 

domain: and . Symmetric boundary conditions are applied on the ux x, z  0  0 uz x, z  0  0

left and right boundaries of the domain. Deformation along the x-direction has been constrained 

 and free movement along the z-direction is allowed. To reproduce the dendritic ux left and right
boundary

 0





protrusion at the lithium electrolyte interface, sinusoidal displacement is applied at the top of the 

lithium metal according to . Unconstrained deformation along the x-direction has uz  Acos x 
been allowed at the top surface. In literature, the sizes of dendritic protrusions range from 

nanometers to microns12-14. The present work takes  and . The deformed A  400nm    106m1

geometry of lithium metal with the dendritic protrusion has been shown in Figure S1(b). Since 

the dendritic protrusion is expected to be initially in a stress-free relaxed condition, all the 

stresses within the deformed lithium metal are taken to be zero9. The initial distance between the 

peak and the valley of the dendritic protrusion is approximately . Next, the electrolyte is   800nm

placed on top of lithium metal, as schematically demonstrated in Figure S1(c). Since PEO-based 

polymer electrolytes are strong candidates for application in solid electrolyte batteries, PEO has 

been used as the electrolyte material in the present study. As shown in Figure S1(d), the 

electrolyte is pushed into full contact with the lithium surface. Symmetric boundary conditions 
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are applied on the left and right side of the computational domain, and the bottom surface of the 

lithium is fixed. This induces compressive stress within the lithium metal as well as the 

electrolyte domain. Depending on the magnitude of stress, both phases can display elastic-plastic 

deformation. Due to plastic deformation within lithium metal, the height of the dendritic 

protrusion reduces to  in the presence of PEO-based polymer electrolytes. Hence, the 580nm

presence of solid electrolyte not only generates a compressive stress field around the dendritic 

protrusion, but also decreases the protrusion height through plastic deformation. 

Growth of a dendritic protrusion depends on its electrolyte environment. Any fluctuation 

that occurs within the polymer electrolyte far away from the lithium nucleus does not have any 

significant impact on its growth. In addition, the variation in electrolyte-salt concentration 

vanishes as we move away from the dendrite tip in the x-dimension. For an 800nm high dendritic 

protrusion, the concentration variation vanishes within . This is evident from the   2m3m

concentration contour plot in Figure 3(b) within the main manuscript and the concentration 

contour maps in the supplementary section (explained later in the Results section). Hence, 

simulation of the polymer-electrolyte near the protrusion should be sufficient to understand its 

growth. In the present study, we use the  thick polymer-electrolyte layer in order to reduce   6m

the computation complexity. At the top of the  thick electrolyte layer, the salt concentration   6m

is uniform, and no impact of the dendritic protrusion is observed.  Therefore, the exact value of 

the separator thickness has little impact on the simulation results, except in the definition of the 

limiting current. 

Finally, the concentration and potential within lithium metal and polymer electrolyte have 

been solved on the computational domain demonstrated in Figure S1(e). The reaction current at 

the lithium-electrolyte interface has been estimated from the modified Butler-Volmer equation. 
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Figure: S1. Demonstration of multiple domains used in this computational analysis. (a) The 
undeformed domain of lithium metal. (b) Deformed lithium metal when subjected to a sinusoidal 
deformation of  at the top surface. The bottom of lithium metal has been kept uz  Acos x 
fixed. The right and left sides are allowed to deform along the y-direction and fixed along the x-
direction. (c) Deformed lithium metal and undeformed electrolyte on top of it. This serves as the 
initial condition for estimating the magnitude of stress evolution within lithium metal and 
electrolyte during development of a dendritic protrusion. (d) Deformed lithium metal and 
electrolyte completely touching each other. Initial relaxed condition of lithium metal and 
subsequent compressive force applied on top of electrolyte produces compressive stresses on 
both the phase. (e) Schematic representation of the lithium and electrolyte domain where 
concentration and potential distributions are calculated. Influx of lithium ions occurs at the top of 
the electrolyte region. The bottom boundary of the lithium metal serves as a current collector. 
Reaction current at the electrolyte-lithium interface has been estimated using the Butler-Volmer 
equation. Symmetric boundary conditions have been imposed on the left and right sides, 
implemented as zero flux.
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The effect of mechanical stress has been incorporated within the exchange current density term. 

Influx of lithium ions occurs at the top of the electrolyte region. The bottom surface of the 

lithium metal serves as a current collector. Symmetric boundary conditions have been 

implemented at the left and right boundaries through the application of zero current and zero ion 

flux. 

Electrochemical equations: Charge transfer in solid lithium can be captured by making 

the divergence of current equal to zero along with the conductivity of lithium15:

 .      (S1)

Here,  is the potential in the solid lithium phase,  is the conductivity of lithium and  is s  Li

the gradient operator. No variation in the out-of-plane direction has been considered in the 

present problem. Here, a scalar value of  has been assumed. Since the conductivity of lithium  Li

is multiple orders of magnitude larger than the electrolyte phase16, variation in potential within 

the lithium metal is negligible and it remains very close to zero. Current entering the lithium 

metal adjacent to the electrolyte phase can be estimated using the Butler-Volmer equation, which 

has been discussed in the main text (see Eq. (2)). On the other end, which is adjacent to the 

current collector, outflow of current is assumed to be equal to the applied current density:

.      (S2)

Potentials are calculated relative to that at one particular point on the bottom boundary. On the  

left and right boundaries, at which symmetric boundary conditions are applied, there is zero 

current density. 

The electric potential in the lithium phase follows Ohm’s law15. The current is 

determined from the potential gradient and conductivity of metallic lithium. In the electrolyte 

phase, charge is carried by migration as well as the diffusion of ionic species8. Hence within the 
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electrolyte region, both the ohmic current and the diffusion-induced current must be taken into 

account8. The convective transport of lithium ions within electrolyte can be neglected8. In the 

electrolyte phase, charge is carried by migration of ions as well as diffusion of ionic species. 

Hence, while modeling the charge transfer within the electrolyte, both the ohmic current and the 

diffusion-induced current must be taken into account15. 

     (S3)

Here,  indicates the potential and  signifies the concentration of lithium ions within the e ce

polymer electrolyte phase. The conductivity for the PEO-based polymer electrolyte is a scalar 

quantity , but varies with the concentration of lithium ions  within the electrolyte. The  PEO  ce 

conductivity for the PEO-based polymer electrolyte  is a scalar quantity that varies with  PEO 

the concentration of lithium ions  within the electrolyte according to the following relation7: 
ce 

     (S4)   PEO 3.801104 ce 2.169107 ce
2 3.1121011ce

3

This value of concentration-dependent conductivity of PEO has been estimated at an elevated 

temperature (900C). The magnitude of the diffusion-induced conductivity  is estimated  D,PEO 

from concentrated solution theory, and given by the form8:

.      (S5) D,PEO 
2RT PEO

F
t

Li
1  1 ce

 ln f
ce







Here,  indicates the universal gas constant,  is the ambient temperature in Kelvin scale,  R T F

indicates the Faraday constant,  signifies the transference number within the electrolyte t
Li

phase, and  is the mean molar activity coefficient for the electrolyte salt. A constant value for f

the lithium transference number  and  has been assumed in the present study17, 18. t
Li   ln f

ce
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Flow of current at the lithium electrolyte interface is estimated from the Butler-Volmer equation 

(see Eq. (2) in the main text). At the other end, inflow of current is assumed to be equal to the 

applied current density:

.      (S6)

The two sides, with symmetric boundary conditions, are subjected to zero flux of current (similar 

to the lithium metal). 

Reduction of lithium ions occurs at the lithium-electrolyte interface (see Eq. (1) in the 

main text), and the newly generated lithium metal gets deposited on top of the anode. The exact 

magnitude of the reaction current is estimated form the nonlinear Butler-Volmer equation. In the 

present context, a modified version of the Butler-Volmer relation has been adopted to 

incorporate the impact of mechanical stress within the charge transfer process. The expression 

for the reaction current density has been provided as Eq. (2) of the main text. 

Diffusion of lithium within the electrolyte phase has been modeled using the Stefan-

Maxwell equations8. The parameter, transference number, indicates the current carried by a 

particular species. Since the electrolyte of lithium ion battery consists of only two charged 

species, the lithium cation carries some portion of the applied current and the anions transports 

the remaining current. The total influx of lithium is represented by , of which the j
Li


iapplied

F






amount  gets transported by migration and the remaining amount  diffuses t
Li

j
Li

1 t
Li j

Li

through the electrolyte. 

At the lithium/polymer interface, no formation of a solid-electrolyte-interphase (SEI) 

layer has been modeled, and the two adjacent regions are assumed to be in perfect contact. The 

governing equation describing the diffusion of lithium ions within the electrolyte phase has been 
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derived from concentrated solution theory8. The following equation is used to estimate 

concentration profile within the electrolyte phase8:

.      (S7)

Here,  indicates time,  denotes the solvent concentration and  signifies the diffusivity of t   c0 De

lithium within the electrolyte phase. In the present context, for PEO-based polymer electrolyte 

systems, the solvent concentration depends weakly on the electrolyte concentration, which 

indicates that 19. Diffusion of lithium within the electrolyte has been assumed   
d lnc0 d lnce 0

to be isotropic; hence a scalar value of the diffusion coefficient is sufficient. The magnitude of 

diffusivity  has been assumed to be constant and independent of lithium ion concentration. De 

Under the assumption of zero bulk velocity of the electrolyte, and a constant value of the cation 

transference number, the governing equation for lithium-ion diffusion simplifies to:

.      (S8)

At the top of the domain, the influx of lithium ions within the electrolyte phase is modeled as:

.      (S9)

At the lithium-electrolyte interface, the outflow of lithium ions can be approximated as:

.    (S10)

At the side boundaries, symmetric boundary conditions suggest that there is zero flux of lithium 

ions. The initial concentration of lithium ions within the electrolyte phase has been taken to be 
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. The kinetic and transport parameters used in the simulation are also given in   
ce t 0  ce ,0

Table: I.

Mechanics equations: The quasistatic equilibrium equation solved to estimate the 

hydrostatic and deviatoric stresses within the lithium metal could be written as20: 

.    (S11)

Here,  indicates the gradient operator and  is the second order stress tensor. In this article, 

the vector/tensor and indicial notations have been used interchangeably. While using the indicial 

notation, implicit summation over the repeated indices have been assumed. Also the body force 

and inertia terms have been neglected. The total stress tensor  has been divided into 
 
 ij 

deviatoric  and hydrostatic  components: 
 

sij   kk 11  22 33 

.           (S12)
  
 ij  sij 

1
3
 kk ij

Here,  indicates the Kronecker delta function. Another stress measure, usually known as the  
 ij

effective stress , must be defined here for usage in the theory of plasticity:
 
 eff 

.    (S13)
  
 eff 

3
2

sijsij

If the effective stress exceeds the yield strength of the material, plastic deformation occurs. 

Under the assumption of small-strain , the strain-displacement kinematic relation is given  ij 
as:

.           (S14) ij 
1
2

ui

x j


u j

xi










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Here,  and  represents the displacement and position vector, respectively. The linear elastic 

stress-strain constitutive relations are given in terms of the shear modulus  and Poisson’s  
G 

ratio 20: 

.           (S15) ij 2G ij 
2G

12
kk ij

During plastic deformation, the stress-strain constitutive relation must be modified in a 

consistent fashion to achieve faster convergence (the modified constitutive relation for elastic-

plastic deformation is shown later as Eq. (S22)).

Appropriate modeling of the elastic-plastic deformation of both lithium metal and the 

polymer electrolyte phase must be conducted to obtain the correct stress field around the 

dendritic protrusion. To appropriately model the elastic-plastic deformation of both lithium metal 

and the polymer electrolyte phase, the yield function has been defined as20, 21:

.    (S16)
  
F  ij , ij  eff  ij  y pl 0

Here,  is the yield function, which satisfies  at all times,  is the stress tensor,   F   F 0  
 ij  

 y

indicates the yield strength and  is the equivalent plastic strain. When the material deforms  
pl

plastically, . Hence, during plastic deformation22:
  
F  ij ,pl 0

.    (S17)
  
dF 0

F
 ij

d ij 
F
pl

dpl

Due to the small-strain small-displacement assumption, the total strain tensor  can be 
 
 ij 

characterized as the summation of elastic strain  and plastic strain  tensors:
 
 ij

e   
 ij

p 
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Figure: S2. Schematic diagram of the experimental setup and computational mesh used to obtain 
the elastic-plastic stress-strain curves for lithium metal and PEO-based polymer electrolyte. (a) 
Schematic diagram of the experimental setup, where one end of the sample is kept fixed. Point 
load is applied at the other end through a stiff support, which tries to emulate the application of 
uniformly distributed load according to the St. Venant’s principle. (b) Schematic diagram of the 
mesh used in the computational study. The zero-displacement boundary conditions at the bottom 
and the left sides of the sample and the uniformly distributed load at the top surface have also 
been depicted here. The axis system considered in this study is also shown.
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.    (S18) 
 ij   ij

e   ij
p

The change in equivalent plastic strain  can be written in terms of the change in plastic 
 
pl 

strain 21:
 
 ij

p 

.    (S19)
  
pl 

2
3
 ij

p ij
p

For both lithium metal and polymer electrolyte, the magnitude of the yield stress  changes 
 
 y 

according to an isotropic strain hardening law, which has been provided later as Eq. (S20). 

For both lithium metal and polymer electrolyte, the magnitude of the yield stress  
 
 y 

changes according to an isotropic strain hardening law22:

.    (S20)  
 y  0 Hpl

m

Here,  is the initial yield strength,  indicates the hardening modulus and  denotes the   0  H  m

hardening exponent. These are material-specific parameters and their values will be different for 

metallic lithium and PEO polymer-based electrolyte systems. To obtain the values of initial yield 

strength , hardening modulus  and hardening exponent , a comparison of  0  H  m 

theoretical predictions with experimental results has been conducted. The experimental stress-

strain curves, adopted from literature, were obtained by applying uniaxial tension on a sample, as 

demonstrated in Figure S2(a)3, 5. The bottom of the experimental sample was assumed to remain 

attached to a base support. A point load was applied at the top of another rigid support, which 

ensures uniform load distribution to the sample according to St. Venant’s principle. To simulate 

similar uniaxial tension behavior on the computational domain, the boundary and loading 
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conditions adopted have been demonstrated in Figure S2(b). The roller boundary condition at the 

bottom and the left side ensures the absence of spurious constraints. 

At the molecular scale, elasticity is characterized as stretching of the atomic and 

molecular bonds22. No rearrangement of atoms or molecules occurs during the elastic 

deformation, which also ensures reversibility under mechanical unloading22. On the other hand, 

plastic deformation is always accompanied with atomic or molecular rearrangements inside the 

material22. Even though the same nonlinear mathematical expression has been used for modeling 

the plasticity and strain hardening observed in lithium and polymer electrolyte, the mechanisms 

behind plastic deformation in lithium metal and polymers are very different. In metallic lithium, 

formation and propagation of dislocations results in plastic flow of the material23. Each 

dislocation produces a stress field around itself23. Accumulation of many dislocations increases 

the strength of the stress field. Formation and movement of new dislocations become difficult 

due to the presence of this enhanced internal stress field22. Hence, more external force needs to 

be applied to create new dislocations and move existing ones. This leads to the strain hardening 

observed in lithium metal during plastic deformation22. However, plastic deformation in PEO-

type semi-crystalline polymers occurs through the elongation of amorphous chains and 

reorientation of crystalline blocks24. Energy required to reorient and reorganize the molecular 

blocks manifests as strain hardening in the macroscopic scale24.

During lithium deposition, if the stresses within the lithium metal or polymer electrolyte 

are lower than their yield strengths, the materials deform purely elastically. As soon as the 

effective stress within the material exceeds its yield limit, the material starts to deform 

plastically, and the linear elastic stress-strain relation becomes inapplicable22. When a material is 

in the plastic regime, determination of the actual stress magnitude is conducted using the “radial-
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return” algorithm. The different steps associated with the calculation of the stress term is listed 

below20, 22:

1. Calculate incremental strain estimated from displacement according to Eq. (S14):  
 ij

2. Estimate incremental trial stress  using the elastic constitutive matrix  
 
 ij

trial   
Cijkl

e 
defined in Eq. (S15): . 

 ij
trial Cijkl

ekl

3. Calculate total trial stress for this time step  using stress at previous step :  ij
trial   ij

n 
 ij

trial  ij
n  ij

trial

4. Estimate the trial deviatoric stress  from Eq. (S12).
 

sij
trial 

5. Estimate the trial effective stress  from Eq. (S13).
 
 eff

trial 

6. If the trial effective stress is smaller than the yield stress , the material is in 
 
 eff

trial  y 
elastic domain. On the contrary, if the trial effective stress is greater than the yield stress, 

the material is in plastic domain .  eff
trial  y 

7. If the material is in elastic domain, then the trial stress  is the final stress   ij
trial   ij

n1 
for the present time step , which can also be written as: .n1    

 ij
n1  ij

trial

8. If the material is in the plastic domain, estimate the direction tensor: .n̂ij 
3
2


sij
trial

 eff
trial

9. The incremental elastic-plastic stress tensor  can be estimated by using Eq. (S17) 
 
 ij 

(for detailed description please refer to Section 6.3 in Ref. 25):
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.    (S21) ij Cijkl
e kl 

n̂abCabcd
e cd

n̂abCabcd
e n̂cd Hmpl

m1
n̂kl











10. For elastic-plastic deformation, the stress at the end of present step is calculated by 

adding incremental stress  to the stress of previous step , which is explicitly 
 
 ij   

 ij
n 

written as: .  
 ij

n1  ij
n  ij

11. The final step is the estimation of elastic-plastic tangent modulus , which is used 
 

Cijkl
ep 

to calculate the stiffness matrix and subsequently the displacement vector mentioned in 

the first step:

.    (S22)Cijkl
ep 

Cijkl
e if  eff

trial  y

Cijkl
e 

Cijab
e n̂ab n̂mnCmnkl

e 
n̂abCabcd

e n̂cd Hmpl
m1

if  eff
trial  y











12. Steps 1 through 11 are continued until the force vector converges, according to the 

criterion . Here,  is the elemental force 

vector at  time step and  iterations. The summation is conducted over all the   
n1   k

elements within the domain.

Through successful implementation of the radial-return algorithm, the correct magnitudes of 

stress within the lithium metal as well as polymer electrolyte have been estimated.

The initial stress state of lithium metal significantly influences the reaction kinetics at the 

lithium-polymer interface. Monroe and Newman assumed the existence of tensile stress within 

the lithium metal, prior to cell assembly2. Under this assumption of “pre-stressed” lithium and 

under purely linear elastic deformation, prevention of dendrite growth is possible only if the 
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shear stiffness of electrolyte is two times larger than that of lithium metal2. However, this 

assumption of pre-stressed lithium suggests dendrite growth even at very low rates of operation9, 

which does not match most experimental reports. An initially relaxed state of lithium (prior to 

cell assembly) was found to give results in line with typical experimental observations and has 

been adopted in the present analysis9.

From the correct values of the stress tensor, the exact mechanical stress-induced 

electrochemical potential can be estimated from Eq. (3) (in the main text). To estimate the 

contribution of the surface energy into the electrochemical potential, the local curvature has to be 

measured. In the 2D computational domain, the local curvature  has been calculated in a piece-

wise fashion according to the following formula26:

   (S23)

  

 x  2 z
x2  1 z

x







2











3/2

where  represents the vertical position of the lithium-electrolyte interface. Substituting this  
z x 

expression of electrochemical potential from Eq. (3) into the Butler-Volmer expression given in 

Eq. (2), the local reaction current density can be obtained. Depending on the concentration, 

potential and stress profiles, the magnitude of reaction current density changes along the x-

direction.

Results

Based on the developed computational technique, it is possible to estimate the potential 

and concentration distribution within the polymer electrolyte at different applied current 

densities. 
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Figure: S3. Potential and concentration contour plots within the electrolyte at three different 
applied current densities. (a, c, e) Potential contours at applied current densities of 1%, 50% and 
90% of the limiting current. (b, d, f) Concentration contour plots at applied current densities of 
1%, 50% and 90% of the limiting current. Gradients in both potential and concentration are large 
at higher current densities.
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Figures S3(a), S3(c) and S3(e) demonstrate the potential contours around the dendritic protrusion 

for three different current densities of 1%, 50% and 90% of the limiting current. Potential within 

the electrolyte is almost zero for low current operation (see Figure S3(a)). However, as the 

current density increases, potential gradients between the protrusion peak and valley emerge. The 

concentration profiles at three different current densities of 1%, 50% and 100% of the limiting 

current are shown in Figure S3(b), S3(d) and S3(f), respectively. At lower magnitudes of applied 

current, almost uniform concentration is observed. For higher applied current densities, 

significant concentration gradients between the peak and the valley evolve. This variation is 

concentration influences the reaction current distribution in a two-fold fashion:

1. Electrolyte salt concentration differences impacts the local conductivity, which in turn 

affects the potential distribution7.

2. The reference exchange current density  also depends on the local i0,ref  Fka
c kcce a 

concentration of electrolyte salt15.

Propensity of growth of a dendritic protrusion is estimated from the ratio of reaction current 

density at the protrusion peak over that at the valley9. Since the variation in concentration and 

potential around the dendritic protrusion is more pronounced at higher current densities, the 

possibility of dendrite growth also increases close to the limiting current. Due to the extremely 

high conductivity of lithium metal, the solid phase potential remains almost close to zero16. Since 

the deposition of lithium occurs at the lithium-polymer electrolyte interface, no transport of 

lithium occurs within the metal. Hence, neither potential nor concentration profiles within the 

lithium metal has been demonstrated in the contour plots.

Evolution of stress within the lithium metal and the polymer electrolyte has a significant 

impact on the overall reaction current density2. 
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Figure: S4. Contour plot of stress evolution within the lithium metal and polymer electrolyte 
system. (a) When the shear modulus of the electrolyte phase is significantly smaller than that of 
lithium , effective stress that evolves within both lithium and electrolyte GElectrolyte 104 GLithium 
are much smaller than the corresponding yield strength. This leads to only elastic deformation of 
both lithium and electrolyte. (b) For PEO polymer based electrolyte, the shear modulus is 
approximately two orders of magnitude smaller than lithium metal . GElectrolyte ~ 102 GLithium 
This leads to significantly larger values of effective stress within the metal and polymer. The 
yield strength of lithium is almost half of PEO-based polymer. The effective stress in lithium 
exceeds the yield limit in certain locations. But the effective stress in electrolyte stays well below 
its yield strength, which is supposed to result in only elastic deformation of the PEO polymer.
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The magnitude of the effective stress (calculated from Eq. (S13)) determines whether plastic 

deformation occurs or not. If the effective stress exceeds the yield limit of the material, it 

deforms plastically. Figure S4 demonstrates the distribution of effective stress within the lithium 

metal and polymer electrolyte. For relatively soft electrolytes with shear modulus multiple orders 

of magnitude smaller than that of lithium  (shown in Figure S4(a)), the GElectrolyte 104 GLithium 

effective stress is significantly smaller than the yield limit. However, as the electrolyte modulus 

increases to something equivalent to that of PEO-based polymers, the effective stress within both 

lithium metal and polymer electrolyte increase. As shown in Figure S4(b), the effective stress in 

the lithium exceeds its yield strength. However, the effective stress in the electrolyte is smaller 

than its yield limit. Hence, plastic deformation is supposed to occur within lithium metal, but 

only elastic deformation is observed in the polymer electrolyte. This plastic deformation of 

lithium metal combined with elasticity of electrolyte leads to significantly reduced height of the 

dendritic protrusion11. 

Evolution of plasticity within lithium metal and the polymer electrolyte governs the 

actual height of the dendritic protrusion to a significant extent. For very low modulus electrolytes 

(shown in Figure S5(a)), only elastic deformation occurs within both the lithium metal and 

polymer electrolyte. As the electrolyte modulus increases to that of PEO-based polymer (see 

Figure S5(b)), the effective stress in lithium exceeds its yield limit, and plastic deformation is 

observed there. However, the effective stress in electrolyte remains below the yield strength, and 

it experiences only elastic deformation. Similar stress evolution was also observed in Figure 

S4(b). Finally, for extremely high shear modulus of the polymer (see Figure S5(c)), both lithium 

and electrolyte experience plastic deformation. This variation in evolution of plasticity has a 

significant impact on the overall protrusion height .H 
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Figure: S5. Plasticity contour plots for three different values of electrolyte shear modulus. Dark 
blue region indicates elastic deformation and light green region denotes evolution of plasticity. 
The white space has been drawn on the electrolyte region at the interface with the lithium to 
visually differentiate between the lithium metal and polymer-based electrolyte domain. (a) For 
very low magnitude of electrolyte shear modulus , the effective stress GElectrolyte ~ 105GLithium 
within lithium and electrolyte region remains well below their corresponding yield limits. Hence, 
only elastic deformation is observed. (b) For electrolyte shear modulus equivalent to that of 
PEO-based polymer , plastic deformation occurs within lithium GElectrolyte ~ 7.7103GLithium 
metal, but the electrolyte deforms elastically. (c) For higher shear modulus of the electrolyte 

, plasticity evolves within both lithium and the electrolyte region. This GElectrolyte ~ 2GLithium 
variation in elastic and plastic deformation of lithium and polymer electrolyte impacts the height 
of the dendritic protrusion, and subsequently its propensity to grow. 
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