Effect of mixed anions on the physicochemical properties of a sodium containing alkoxyammonium ionic liquid electrolyte

Matthias Hilder^a, Matthieu Gras^{a,b}, Cameron R. Pope^a, Mega Kar^c, Douglas R. MacFarlane^{c,d}, Maria Forsyth^{a,d} and Luke A. O'Dell^{a*}

^aInstitute for Frontier Materials, Deakin University, Geelong Waurn Ponds Campus, Victoria 3220, Australia

^bUniversity of Montpellier, 163 rue Auguste Broussonnet, 34 090 Montpellier, France ^cSchool of Chemistry, Monash University, Clayton, Victoria 3800, Australia

^dARC Centre of Excellence in Electromaterials Science (ACES), Institute for Frontier Materials, Deakin University, Burwood, Victoria 3215, Australia

*Corresponding author: luke.odell@deakin.edu.au

Figure S1 - Sample densities as a function of Na salt concentration

Figure S2 - Sample viscosities as a function of temperature

Figure S3 - Sample conductivities as a function of temperature

Figure S1: Densities of the mixtures of $N_{2(20201)3}$ TFSI with NaFSI and NaTFSI as a function of the Na salt concentration at 60°C

Figure S2: Dynamic viscosities of pure $N_{2(2O2O1)3}$ TFSI and of the solutions with NaFSI and NaTFSI as a function of linear temperature.

Figure S3: Conductivities as a function of temperature for the neat IL and their Na solutes