Supporting Information

1. Experimental data for all molecules investigated

2. Gas phase ground state B3LYP/6-31+G(d) optimised geometries for molecules in the test subset

3. Tuned range-separation parameters for all molecules

4. Basis set effect on vertical excitation energies

5. Effect of spectral HWHM on the calculated fluorescence lifetimes

6. Charge-transfer diagnostics for VI

7. Fluorescence lifetime calculations for all functionals and molecules investigated

8. Ground and excited state optimised geometries for all molecules using the LC-BLYP* functional

9. Dependence of the range-separation parameter on the basis set and molecular geometry

1. Experimental data for all molecules investigated

	Solvent	ϕ_f	$ au_f$	Ref.
Ι	Cyclohexane	0.92	12.7	1
II	Cyclohexane	0.87	11.5	2, 3
III	Acetonitrile	0.98	5.5	4
IV	MethylCyclohexane	0.97	6.2	4
V	Cyclohexane	1.00	7.5	1
VI	Ethanol	0.97	10.5	5
VII	Ethanol	0.98	10.6	5
VIII	Ethanol	0.99	10.7	5
IX	Cyclohexane	0.94	1.36	1
X	Methanol	0.85	1.17	1
XI	1,4-dioxane	0.90	0.64	6
XII	Cyclohexane	0.82	0.87	7
XIII	1,4-dioxane	0.92	7.4	8
XIV	1,4-dioxane	0.97	9.8	8
XV	1,4-dioxane	1.00	17.0	8
XVI	1,4-dioxane	1.00	10.7	8
XVII	1,4-dioxane	0.90	12.3	8
XVIII	1,4-dioxane	0.78	9.0	8
XIX	Acetonitrile	0.92	5.2	9
XX	Acetonitrile	0.80	3.5	9
XXI	Ethyl Acetate	0.99	3.1	9
XXII	Cyclohexane	1.00	4.1	9
XXIII	Ethanol	0.93	5.4	9
XXIV	Toluene	0.90	3.3	10

Table S1: Experimental quantum yields and fluorescence lifetimes (in ns) of all molecules investigated in this study, as taken from the literature.

	Solvent	λ_{abs}	λ_{emi}	Stokes shift	Ref.
Ι	Cyclohexane	3.271	3.084	0.187	1
II	Cyclohexane	2.959	2.938	0.021	2
III	Acetonitrile	2.863	2.837	0.026	4
IV	MethylCyclohexane	2.837	2.799	0.038	4
V	Cyclohexane	3.324	3.061	0.263	1
VI	Ethanol	3.116	3.002	0.114	5
VII	Ethanol	3.080	2.931	0.149	5
VIII	Ethanol	3.123	2.994	0.129	5
IX	Cyclohexane	4.092	3.473	0.619	1
X	Methanol	4.476	3.690	0.786	1
XI	1,4-dioxane	3.875	3.573	0.301	6
XII	Cyclohexane	4.240	3.397	0.843	7
XIII	1,4-dioxane	3.408	3.174	0.234	8
XIV	1,4-dioxane	3.495	3.196	0.299	8
XV	1,4-dioxane	3.647	2.871	0.776	8
XVI	1,4-dioxane	3.369	2.888	0.481	8
XVII	1,4-dioxane	3.447	2.944	0.503	8
XVIII	1,4-dioxane	4.003	2.862	1.140	8
XIX	Acetonitrile	3.397	2.666	0.731	9
XX	Acetonitrile	3.502	2.952	0.550	9
XXI	Ethyl Acetate	3.434	2.980	0.454	9
XXII	Cyclohexane	3.297	2.863	0.434	9
XXIII	Ethanol	3.031	2.475	0.557	9
XXIV	Toluene	3.289	2.792	0.496	10

Table S2: Experimental absorption (λ_{abs}) , emission (λ_{emi}) and Stokes shift of all molecules in solvent investigated in this study, as taken from the literature. All values are in eV

Solvent	n	
1,4-dioxane	1.4224	
Acetonitrile	1.3442	
Cyclohexane	1.4235	
Ethanol	1.3611	
Ethyl Acetate	1.3723	
Methanol	1.3288	
MethylCyclohexane	1.4231	
Toluene	1.4941	
Acetonitrile Cyclohexane Ethanol Ethyl Acetate Methanol MethylCyclohexane Toluene	1.3442 1.4235 1.3611 1.3723 1.3288 1.4231 1.4941	

Table S3: Refractive index (n) of all solvents used in the calculation of fluorescence lifetimes. All values were taken from the CRC Handbook of Chemistry and Physics.¹¹

2. Gas phase ground state B3LYP/6-31+G(d) optimised geometries for molecules in the test set

I

C -9.640514 -1.130303 -0.002846 C -8.269467 -1.111809 0.000707 C -7.551194 0.125649 0.003561 C -8.293358 1.362565 0.002645 C -9.720486 1.302363 -0.001096 C -10.371540 0.093228 -0.003745 C -6.150884 0.163675 0.007213 C -7.575368 2.585300 0.005484 C -6.157870 2.618744 0.009168 C -5.437244 1.369145 0.010017 C -4.006734 1.395718 0.013725 H -3.471414 0.449067 0.014350 C -3.324322 2.585027 0.016418 C -4.038598 3.818392 0.015573 C -5.411713 3.836853 0.012067 H -5.598948 -0.774501 0.007891 H -10.175991 -2.075787 -0.004998 H -7.702012 -2.039568 0.001419 H -10.286661 2.229171 -0.001815 H-11.457919 0.066525 -0.006558 H -2.237776 2.593641 0.019200 H -3.487473 4.754986 0.017743 H -5.946600 4.782062 0.011456 C -8.300969 3.818681 0.004623 N -8.891911 4.823125 0.003924

VI

C -7.688542 -5.356115 -0.065777 C -6.303897 -5.387261 0.000062 C -5.549260 -4.199142 -0.012249 C -6.225081 -2.960229 -0.093340 C -7.632994 -2.929316 -0.160393 C -8.350396 -4.116187 -0.146237 C -4.073100 -4.250911 0.058865 C -4.120228 -1.739483 -0.044134 C -3.383328 -2.942978 0.038202 C -1.978638 -2.878966 0.100659 H -1.438076 -3.818496 0.163540 C -1.316566 -1.660807 0.082334 C -2.061292 -0.468905 0.000217 C -3.446413 -0.501213 -0.062506 H -8.260684 -6.279305 -0.055396 H -5.759151 -6.324371 0.063061 H -8.149527 -1.973493 -0.223117 H -9.435676 -4.082586 -0.197958 H -0.232136 -1.623259 0.130664 H -1.550201 0.490369 -0.014715 H-4.017456 0.422997 -0.126064 N -5.499774 -1.784310 -0.106516 H -6.005219 -0.910365 -0.166635 O -3.455781 -5.318284 0.130834

C -7.233047 0.816458 -1.080443 C -7.239141 0.809780 1.106539 C -8.003272 -0.216742 0.617344 H-8.560002-0.964802 1.163741 C -6.882760 1.288651 2.434371 C -6.042744 2.404340 2.605189 C -7.379261 0.634220 3.578686 C -5.710600 2.849881 3.885043 H -5.652261 2.918638 1.732929 C -7.043839 1.083800 4.853615 H -8.029879 -0.229193 3.469206 C -6.207639 2.194363 5.014682 H -5.060312 3.713537 3.998533 H-7.436587 0.566012 5.724883 H -5.947420 2.543635 6.010271 C -6.876069 1.294515 -2.411857 C -6.042239 2.411882 -2.589766 C -7.378425 0.620738 -3.539840 C -5.718032 2.845568 -3.875470 H -5.651334 2.935745 -1.723200 C -7.049839 1.060183 -4.820369 H -8.021698 -0.241405 -3.394912 C -6.219256 2.173277 -4.994113 H -5.072533 3.710666 -4.003262 H-7.442658 0.533316 -5.686100 H -5.964888 2.513736 -5.994472 O -6.740819 1.478074 0.008952 N -7.990146 -0.200002 -0.761366

XIII

C -1.255828 -1.346022 -0.182851 C -0.022441 -2.130289 0.000937 C 1.042626 -1.290890 -0.041310 C 1.044062 1.287450 -0.086706 C -0.020065 2.129010 -0.074103 C -1.254328 1.340145 -0.230277 N 0.607083 -0.005501 -0.292505 N -0.770350 -0.006371 -0.385161 O -2.422537 -1.675799 -0.188381 O -2.420664 1.670832 -0.247481 H 2.104260 1.482699 0.008541 H 2.102612 -1.483890 0.060664 H -0.011433 -3.201805 0.134577 H -0.007863 3.204555 0.021716

XIX

C -7.278096 -2.321418 -0.048780 C -5.878242 -2.279564 0.012173 C -5.225888 -1.052105 0.023848 C -5.923945 0.176255 -0.021729 C -7.334821 0.109344 -0.083475 C -7.998024 -1.102434 -0.097094 H -5.284406 -3.188044 0.045578 C -5.124265 1.378600 0.000278 H -7.915803 1.023497 -0.119881 H -9.083358 -1.123068 -0.151176 C -3.769146 1.317471 0.062379 C -3.064986 0.043530 0.109819 H -3.145488 2.201687 0.079804 N -7.947005 -3.528812 -0.112461 H -7.450442 -4.359552 0.180854 H -8.929782 -3.534296 0.125352 C -5.798470 2.734491 -0.049187 F -6.650598 2.904584 0.994498 F-4.918870 3.755850 -0.010306 F -6.529911 2.883036 -1.183304 O -3.861170 -1.097731 0.086290 O -1.864636 -0.101635 0.167281

3. Tuned range-separation parameters for all molecules

Table S4. Tuned range separation parameter γ (Bohr⁻¹) for all molecules with the LC-BLYP* and ω B97X* functionals. The default values for LC-BLYP and ω B97X are 0.4700 Bohr⁻¹ and 0.3000 Bohr⁻¹ respectively. R² refers to the coefficient of determination for the fit.

	LC-BLYP*		wB97X*		
	γ	\mathbb{R}^2	γ	\mathbb{R}^2	
Ι	0.2216	0.9997	0.1900	0.9996	
II	0.2159	0.9997	0.1850	0.9995	
III	0.2098	0.9994	0.1797	0.9990	
IV	0.2151	0.9996	0.1841	0.9992	
V	0.1831	0.9993	0.1373	0.9994	
VI	0.2333	0.9998	0.1974	0.9997	
VII	0.2230	0.9997	0.1886	0.9995	
VIII	0.2052	0.9998	0.1730	0.9997	
IX	0.2143	0.9999	0.1833	0.9997	
X	0.2066	0.9998	0.1770	0.9997	
XI	0.1933	0.9998	0.1649	0.9999	
XII	0.1911	0.9997	0.1646	0.9998	
XIII	0.2829	0.9999	0.2398	0.9999	
XIV	0.2592	0.9999	0.2194	0.9999	
XV	0.2652	1.0000	0.2256	0.9999	
XVI	0.2399	0.9999	0.2035	0.9998	
XVII	0.2393	0.9999	0.2028	0.9998	
XVIII	0.2429	1.0000	0.2059	0.9999	
XIX	0.2468	0.9999	0.2106	0.9999	
XX	0.2249	1.0000	0.1907	0.9999	
XXI	0.2220	0.9999	0.1858	1.0000	
XXII	0.2200	1.0000	0.1854	0.9998	
XXIII	0.2120	1.0000	0.1785	0.9998	
XXIV	0.2101	1.0000	0.1782	0.9998	

4. Basis set effect on vertical excitation energies

The geometries used here are those from Section 2 of the Supporting Information

	6-31+G*	6-311+G*	def2TZVP	aug-cc-pVDZ	aug-cc-pVTZ
B3LYP	3.0320	3.0111	2.9955	2.9903	2.9833
	(0.0963)	(0.0923)	(0.0864)	(0.0857)	(0.0854)
BMK	3.3087	3.2877	3.2661	3.2582	3.2514
	(0.1239)	(0.1188)	(0.1117)	(0.1087)	(0.1089)
CAM-	3.3484	3.3209	3.2965	3.2907	3.2817
B3LYP	(0.1376)	(0.1314)	(0.1216)	(0.1200)	(0.1195)
LC-BLYP	3.6388	3.6037	3.5681	3.5637	3.5516
	(0.1781)	(0.1691)	(0.1547)	(0.1521)	(0.1510)
M06	3.0175	3.0062	2.9925	2.9701	2.9849
	(0.1027)	(0.0982)	(0.0932)	(0.0908)	(0.0911)
M06-2X	3.3813	3.3477	3.3345	3.3200	3.3087
	(0.1314)	(0.1259)	(0.1176)	(0.1139)	(0.1144)
M11	3.5354	3.4807	3.4632	3.4711	3.4356
	(0.1598)	(0.1530)	(0.1431)	(0.1387)	(0.1380)
PBE0	3.1138	3.0918	3.0718	3.0670	3.0596
	(0.1033)	(0.0992)	(0.0923)	(0.0912)	(0.0908)
ωB97	3.5894	3.5582	3.5187	3.5186	3.5057
	(0.1702)	(0.1623)	(0.1497)	(0.1459)	(0.1457)
ωB97X	3.5124	3.4826	3.4489	3.4454	3.4363
	(0.1615)	(0.1541)	(0.1423)	(0.1393)	(0.1391)
LC-BLYP*	3.2655	3.2398	3.2163	3.2091	3.2010
	(0.1281)	(0.1223)	(0.1127)	(0.1119)	(0.1112)
ωB97X*	3.3107	3.2858	3.2607	3.2556	3.2503
	(0.1335)	(0.1280)	(0.1193)	(0.1169)	(0.1169)

Table S5. Basis set effect on the gas phase vertical excitation energies (in eV) of I calculated using TD-DFT. Oscillator strengths are given in parentheses.

	6-31+G*	6-311+G*	def2TZVP	aug-cc-pVDZ	aug-cc-pVTZ
B3LYP	3.5521	3.5215	3.5100	3.4823	3.4847
	(0.0786)	(0.0752)	(0.0689)	(0.0684)	(0.0679)
BMK	3.8923	3.8620	3.8387	3.8082	3.8098
	(0.1062)	(0.1023)	(0.0946)	(0.0914)	(0.0922)
CAM-	3.9494	3.9142	3.8927	3.8586	3.8614
B3LYP	(0.1152)	(0.1101)	(0.0996)	(0.0988)	(0.0982)
LC-BLYP	4.2986	4.2580	4.2243	4.1864	4.1891
	(0.1483)	(0.1413)	(0.1267)	(0.1250)	(0.1241)
M06	3.6433	3.6069	3.6054	3.5722	3.5638
	(0.0830)	(0.0798)	(0.0742)	(0.0723)	(0.0727)
M06-2X	3.9435	3.9159	3.8930	3.8477	3.8639
	(0.1148)	(0.1106)	(0.1010)	(0.0975)	(0.0980)
M11	4.0959	4.0695	4.0531	3.9916	4.0190
	(0.1333)	(0.1285)	(0.1182)	(0.1130)	(0.1143)
PBE0	3.6569	3.6259	3.6058	3.5795	3.5824
	(0.0856)	(0.0823)	(0.0001)	(0.0740)	(0.0736)
ωB97	4.2301	4.1887	4.1574	4.1188	4.1231
	(0.1396)	(0.1339)	(0.1213)	(0.1182)	(0.1181)
ωB97 X	4.1427	4.1039	4.0736	4.0394	4.0418
	(0.1326)	(0.1272)	(0.1151)	(0.1130)	(0.1129)
LC-BLYP*	3.7893	3.7556	3.7333	3.6988	3.7008
	(0.1059)	(0.1010)	(0.0902)	(0.0904)	(0.0897)
ωB97 X*	3.9031	3.8683	3.8444	3.8137	3.8167
	(0.1107)	(0.1065)	(0.0970)	(0.0953)	(0.0954)

Table S6. Basis set effect on the gas phase vertical excitation energies (in eV) of **VI** calculated using TD-DFT. Oscillator strengths are given in parentheses.

	6-31+G*	6-311+G*	def2TZVP	aug-cc-pVDZ	aug-cc-pVTZ
B3LYP	3.7743	3.7574	3.7617	3.7376	3.7255
	(0.8382)	(0.8380)	(0.8487)	(0.8319)	(0.8293)
BMK	4.1078	4.0900	4.0869	4.0626	4.0549
	(0.9043)	(0.9031)	(0.9132)	(0.9026)	(0.8968)
CAM-	4.1254	4.1039	4.1040	4.0806	4.0671
B3LYP	(0.8694)	(0.8710)	(0.8889)	(0.8701)	(0.8668)
LC-BLYP	4.4362	4.4083	4.3989	4.3803	4.3649
	(0.8512)	(0.8534)	(0.8743)	(0.8590)	(0.8548)
M06	3.7625	3.7590	3.7728	3.7261	3.7361
	(0.8047)	(0.8083)	(0.8334)	(0.8068)	(0.8008)
M06-2X	4.1714	4.1451	4.1580	4.1255	4.1096
	(0.8863)	(0.8864)	(0.9108)	(0.8888)	(0.8847)
M11	4.3621	4.3144	4.3273	4.3151	4.2732
	(0.8801)	(0.8768)	(0.9209)	(0.8901)	(0.8821)
PBE0	3.8760	3.8576	3.8569	3.8357	3.8235
	(0.8604)	(0.8611)	(0.8734)	(0.8571)	(0.8547)
ωB97	4.4027	4.3764	4.3565	4.3494	4.3309
	(0.8630)	(0.8653)	(0.8780)	(0.8717)	(0.8654)
ωB97X	4.3189	4.2943	4.2807	4.2682	4.2536
	(0.8745)	(0.8761)	(0.8903)	(0.8803)	(0.8762)
LC-BLYP*	4.0378	4.0197	4.0253	3.9965	3.9850
	(0.8598)	(0.8612)	(0.8790)	(0.8572)	(0.8548)
ωB97X*	4.0980	4.0782	4.0712	4.0557	4.0448
	(0.8805)	(0.8820)	(0.8937)	(0.8811)	(0.8796)

Table S7. Basis set effect on the gas phase vertical excitation energies (in eV) of IX calculated using TD-DFT. Oscillator strengths are given in parentheses.

6-31+G*	6-311+G*	def2TZVP	aug-cc-pVDZ	aug-cc-pVTZ
3.8052	3.7963	3.7881	3.7571	3.7628
(0.1986)	(0.1935)	(0.1871)	(0.1819)	(0.1813)
4.0057	4.0047	3.9844	3.9586	3.9634
(0.2318)	(0.2261)	(0.2184)	(0.2107)	(0.2099)
4.0090	4.0024	3.9893	3.9557	3.9632
(0.2355)	(0.2288)	(0.2194)	(0.2133)	(0.2120)
4.2255	4.2226	4.2041	4.1683	4.1773
(0.2744)	(0.2655)	(0.2530)	(0.2461)	(0.2442)
3.8400	3.8274	3.8182	3.7962	3.7868
(0.1985)	(0.1941)	(0.1920)	(0.1821)	(0.1826)
4.0015	3.9993	3.9825	3.9457	3.9637
(0.2371)	(0.2302)	(0.2193)	(0.2144)	(0.2118)
4.0239	4.0232	4.0053	3.9681	3.9785
(0.2476)	(0.2433)	(0.2302)	(0.2230)	(0.2241)
3.8798	3.8717	3.8581	3.8289	3.8343
(0.2082)	(0.2026)	(0.1949)	(0.1890)	(0.1886)
4.1662	4.1598	4.1409	4.1111	4.1156
(0.2646)	(0.2578)	(0.2469)	(0.2383)	(0.2373)
4.1098	4.1034	4.0842	4.0556	4.0597
(0.2540)	(0.2476)	(0.2373)	(0.2292)	(0.2285)
3.9265	3.9214	3.9072	3.8726	3.8791
(0.2327)	(0.2261)	(0.2160)	(0.2102)	(0.2088)
4.0193	4.0123	3.9940	3.9670	3.9699
(0.2390)	(0.2335)	(0.2243)	(0.2165)	(0.2162)
	$\begin{array}{c} 6-31+G^{*}\\ \hline 3.8052\\ (0.1986)\\ \hline 4.0057\\ (0.2318)\\ \hline 4.0090\\ (0.2355)\\ \hline 4.2255\\ (0.2744)\\ \hline 3.8400\\ (0.1985)\\ \hline 4.0015\\ (0.2744)\\ \hline 3.8400\\ (0.1985)\\ \hline 4.0015\\ (0.2711)\\ \hline 4.0239\\ (0.2476)\\ \hline 3.8798\\ (0.2082)\\ \hline 4.1662\\ (0.2646)\\ \hline 4.1098\\ (0.2540)\\ \hline 3.9265\\ (0.2327)\\ \hline 4.0193\\ (0.2390)\\ \end{array}$	6-31+G*6-311+G*3.80523.7963(0.1986)(0.1935)4.00574.0047(0.2318)(0.2261)4.00904.0024(0.2355)(0.2288)4.22554.2226(0.2744)(0.2655)3.84003.8274(0.1985)(0.1941)4.00153.9993(0.2371)(0.2302)4.02394.0232(0.2476)(0.2433)3.87983.8717(0.2082)(0.2026)4.16624.1598(0.2646)(0.2578)4.10984.1034(0.2540)(0.2476)3.92653.9214(0.2327)(0.2261)4.01934.0123(0.2390)(0.2335)	$6-31+G^*$ $6-311+G^*$ $def2TZVP$ 3.8052 3.7963 3.7881 (0.1986) (0.1935) (0.1871) 4.0057 4.0047 3.9844 (0.2318) (0.2261) (0.2184) 4.0090 4.0024 3.9893 (0.2355) (0.2288) (0.2194) 4.2255 4.2226 4.2041 (0.2744) (0.2655) (0.2530) 3.8400 3.8274 3.8182 (0.1985) (0.1941) (0.1920) 4.0015 3.9993 3.9825 (0.2371) (0.2302) (0.2193) 4.0239 4.0232 4.0053 (0.2476) (0.2433) (0.2302) 3.8798 3.8717 3.8581 (0.2082) (0.2026) (0.1949) 4.1662 4.1598 4.1409 (0.2646) (0.2578) (0.2469) 4.1098 4.1034 4.0842 (0.2540) (0.2476) (0.2373) 3.9265 3.9214 3.9072 (0.2327) (0.2261) (0.2160) 4.0193 4.0123 3.9940 (0.2390) (0.2335) (0.2243)	$6-31+C^*$ $6-311+C^*$ $def2TZVP$ $aug-cc-pVDZ$ 3.8052 3.7963 3.7881 3.7571 (0.1986) (0.1935) (0.1871) (0.1819) 4.0057 4.0047 3.9844 3.9586 (0.2318) (0.2261) (0.2184) (0.2107) 4.0090 4.0024 3.9893 3.9557 (0.2355) (0.2288) (0.2194) (0.2133) 4.2255 4.2226 4.2041 4.1683 (0.2744) (0.2655) (0.2530) (0.2461) 3.8400 3.8274 3.8182 3.7962 (0.1985) (0.1941) (0.1920) (0.1821) 4.0015 3.9993 3.9825 3.9457 (0.2371) (0.2302) (0.2193) (0.2144) 4.0239 4.0232 4.0053 3.9681 (0.2476) (0.2433) (0.2302) (0.2230) 3.8798 3.8717 3.8581 3.8289 (0.2082) (0.2026) (0.1949) (0.1890) 4.1662 4.1598 4.1409 4.1111 (0.2646) (0.2578) (0.2469) (0.2383) 4.1098 4.1034 4.0842 4.0556 (0.2327) (0.2261) (0.2160) (0.2102) 4.0193 4.0123 3.9940 3.9670 (0.2390) (0.2335) (0.2243) (0.2165)

Table S8. Basis set effect on the gas phase vertical excitation energies (in eV) of **XIII** calculated using TD-DFT. Oscillator strengths are given in parentheses.

	6-31+G*	6-311+G*	def2TZVP	aug-cc-pVDZ	aug-cc-pVTZ
B3LYP	3.6583	3.6331	3.6659	3.6449	3.6454
	(0.3209)	(0.3157)	(0.3105)	(0.3133)	(0.3147)
BMK	3.9800	3.9570	3.9799	3.9599	3.9576
	(0.3961)	(0.3913)	(0.3833)	(0.3831)	(0.3860)
CAM-	4.0017	3.9742	3.9952	3.9750	3.9723
B3LYP	(0.3963)	(0.3915)	(0.3786)	(0.3827)	(0.3828)
LC-BLYP	4.2823	4.2508	4.2628	4.2436	4.2384
	(0.4417)	(0.4369)	(0.4209)	(0.4243)	(0.4238)
M06	3.7229	3.6989	3.7387	3.7120	3.7117
	(0.3367)	(0.3328)	(0.3300)	(0.3290)	(0.3311)
M06-2X	4.0241	3.9996	4.0225	3.9959	4.0015
	(0.4067)	(0.4019)	(0.3910)	(0.3912)	(0.3936)
M11	4.1495	4.1224	4.1467	4.1224	4.1236
	(0.4245)	(0.4201)	(0.4107)	(0.4087)	(0.4095)
PBE0	3.7642	3.7392	3.7680	3.7475	3.7488
	(0.3440)	(0.3392)	(0.3322)	(0.3349)	(0.3360)
ω B 97	4.2391	4.2101	4.2190	4.2041	4.1986
	(0.4260)	(0.4225)	(0.4083)	(0.4103)	(0.4103)
ωB97X	4.1656	4.1380	4.1498	4.1335	4.1299
	(0.4169)	(0.4131)	(0.3993)	(0.4020)	(0.4023)
LC-BLYP*	3.9095	3.8837	3.9037	3.8812	3.8779
	(0.3656)	(0.3616)	(0.3466)	(0.3524)	(0.3528)
ωB97X*	4.0047	3.9800	3.9971	3.9791	3.9784
	(0.3862)	(0.3829)	(0.3710)	(0.3735)	(0.3747)

Table S9. Basis set effect on the gas phase vertical excitation energies (in eV) of **XIX** calculated using TD-DFT. Oscillator strengths are given in parentheses.

Table S10. Basis set effect on the gas phase vertical excitation energies (in eV) calculated
using correlated wave function methods. Oscillator strengths are given in parentheses where
available.

- - -

	CIS(D)		CC2		EOM-CCSD	
	6-31+G(d)	6-311+G(d)	6-31+G(d)	6-311+G(d)	6-31+G(d)	6-311+G(d)
Ι	3.82	3.77	3.59 (0.1384)	3.54 (0.1309)	3.90 (0.1682)	3.85 (0.1610)
VI	4.65	4.60	4.46 (0.9718)	4.41 (0.9740)	4.67 (0.9082)	4.62 (0.9202)
IX	3.79	3.75	3.76 (0.1217)	3.71 (0.1155)	3.97 (0.1304)	3.94 (0.1252)
XIII	3.84	3.83	3.83 (0.3205)	3.82 (0.3137)	4.02 (0.3237)	4.01 (0.3156)
XIX	4.18	4.13	3.96 (0.4312)	3.91 (0.4264)	4.20 (0.4091)	4.16 (0.4118)

The basis set effect on the TD-DFT vertical excitation energies and oscillator strengths were then investigated using the test set. The results obtained using the 6-31+G(d),¹²⁻¹⁵ 6-311+G(d),^{15, 16} def2TZVP,¹⁷ aug-cc-pVDZ basis sets¹⁸⁻²⁰ were compared to those using the aug-cc-pVTZ basis set.¹⁸⁻²⁰ The results are given in Tables S5 to S9. The aug-cc-pVDZ results were found to match the aug-cc-pVTZ results very closely, with their excitation energies and oscillator strengths within 0.02 eV and 0.01 of each other respectively. The def2TZVP results were slightly poorer, while the 6-31+G(d) and 6-311+G(d) basis sets returned excitation energies and oscillator strengths that were noticeable higher than the augcc-pVTZ values.

5. Effect of spectral HWHM on the calculated fluorescence lifetimes

Santoro and co-workers have proposed the use of PCM solvation in conjunction with the state-specific method as an *ab initio* approach towards calculating the solvent inhomogeneous broadening for an electronic transition.^{21, 22} This is in turn used as the value of the half width at half-maximum (HWHM) of the Gaussian functions used to convolute the simulated vibronic spectra. However, the cited approach is known to underestimate the actual experimental width in the case of non-polar solvents. We have carried out the relevant calculations for the test set (**I**, **VI**, **IX**, **XIV**, **XIX**), and our findings agree with their work (Table S11). However, our set of experimental data consists of a mixture of polar and non-polar solvents. As it would not be desirable to only calculate the HWHM for molecules in polar solvents, we chose to keep the value of the HWHM constant throughout.

Table S11: The computed non-equilibrium and equilibrium vertical emission energy (v_{emi}) , solvation reorganisation energy for emission (λ) , and HWHM for the convoluting function used in simulating the emission spectra for the molecules in the test set. All values are in cm⁻¹. The calculations were carried out using PBE0/aug-cc-pVDZ and assuming a temperature of T = 298 K. For further details of the use of the state-specific method to estimate the band width, refer to Ferrer *et al.*²²

	Solvent	v_{emi} (non-eq.)	v_{emi} (eq.)	λ	HWHM
Ι	Cyclohexane	21560	21560	~0	~0
VI	Cyclohexane	26510	26510	~0	~0
IX	Ethanol	25380	25300	80	220
XIII	1,4-dioxane	27520	27520	~0	~0
XIX	Acetonitrile	22160	21700	450	510

We then investigated the effect of varying the HWHM on the calculated fluorescence lifetimes. The value of the HWHM of the convoluting Gaussian function only affects the $\frac{1}{1}$

results obtained using Scheme C through the $\overline{\langle \tilde{v}_f^3 \rangle}$ term (see Table 1 in main paper).

Table S12 summarises the effect of varying the value of HWHM on the $\frac{1}{\langle \tilde{v}_f^{-3} \rangle}$ term and resultant fluorescence lifetime.

Table S12: Effect of changing the HWHM (cm⁻¹) of each band in the simulated vibronic $\frac{1}{\langle \tilde{v}_f^{-3} \rangle} (\times 10^{-13})$ spectra on $\langle \tilde{v}_f^{-3} \rangle$ and fluorescence lifetime, τ_f (ns) for the molecules in the test set, as calculated using the PBE0 functional.

	Ι		VI		IX		XIII		XIX	
	1		1		1		1		1	
Н₩НМ	$\overline{\langle \tilde{v}_f^{-3} \rangle}$	t_f	$< \tilde{v}_f^{-3} >$	τ_f	$< \tilde{v}_f^{-3} >$	t_f	$< \tilde{v}_f^{-3} >$	t_f	$< \tilde{v}_f^{-3} >$	$ au_f$
100	1.12	18.02	0.74	19.71	0.72	1.44	0.66	8.88	1.42	9.47
135 (Default)	1.12	18.02	0.74	19.71	0.72	1.44	0.66	8.88	1.42	9.47
200	1.12	18.03	0.74	19.71	0.72	1.44	0.66	8.88	1.42	9.47
300	1.12	18.04	0.74	19.72	0.72	1.44	0.66	8.88	1.42	9.48
400	1.12	18.05	0.74	19.73	0.72	1.44	0.66	8.89	1.43	9.49
500	1.12	18.08	0.74	19.76	0.72	1.45	0.66	8.90	1.43	9.50
600	1.12	18.14	0.74	19.81	0.72	1.45	0.66	8.91	1.43	9.52
700	1.13	18.23	0.75	19.87	0.73	1.45	0.66	8.94	1.44	9.55
800	1.14	18.33	0.75	19.96	0.73	1.46	0.67	8.97	1.44	9.59
900	1.14	18.46	0.75	20.06	0.73	1.46	0.67	9.01	1.45	9.63
1000	1.15	18.60	0.76	20.17	0.73	1.47	0.67	9.06	1.46	9.68

6. Charge-transfer diagnostics for VI

The charge-transfer criteria suggested by Autschbach and co-workers have been evaluated for the π - π * electronic transition of **VI** (Table S13).^{23, 24} $O_{\pi\pi^*} = \langle |\phi_{\pi}(r)| |\phi_{\pi^*}(r)| \rangle = \int |\phi_{\pi}(r)\phi_{\pi^*}(r)| dr$ refers to the spatial overlap integral between the $\frac{1}{2}(|\Delta \rho|)$

transition orbitals, and $\frac{1}{2}\langle |\Delta\rho| \rangle$ measures the extent of charge transfer between "spatially disjointed" regions with $|\Delta\rho| = |\phi_{\pi}^2 - \phi_{\pi^*}^2|$. Single point calculations for VI in the gas phase with two sets of functionals (BLYP and LC-BLYP*) were carried out and the resultant .fchk files saved for the following evaluation of the charge-transfer criteria. The cubegen and cubeman utilities of Gaussian09 were used in conjunction with the bash command ("sed –i 's/-\([0-9]\.[0-9]\+\)E/ \1E/g") to obtain .cube files corresponding to $|\phi_{HOMO}||\phi_{LUMO}|$ and $|\Delta\rho|$, while numerical integration over grid points were performed with Gabedit.²⁵ The default "Medium" option was used as the parameters for the grid used to generate the .cube files in cubegen. Using this set of parameters, the integral of the SCF density of VI was found to be 101.8, close to the actual number of electrons in VI (102). The values of the calculated charge-transfer criteria is given in Table S12.

Table S13: CT criteria for the π - π * transition of VI. and $\frac{1}{2}\langle |\Delta \rho| \rangle$ were found to ~0.7 and ~0.6 respectively for the rhodamines studied in *ChemistryOpen*, 2017, **6**, 385-392. The calculations were carried out in the gas phase.

	0	$\frac{1}{2}\langle \Delta \rho \rangle$
BLYP	0.72	0.55
LC-BLYP*	0.71	0.57

Moore II *et al.*^{23, 24} have suggested that large values for both the overlap integral 0 as well as the density change criteria $\frac{1}{2}\langle |\Delta \rho| \rangle$ may indicate differential electron correlation between the ground and excited state. In their study of the electronic excitations of

rhodamines, the values of O and $\frac{1}{2}\langle |\Delta \rho| \rangle$ were found to ~0.7 and ~0.6 respectively, which is similar to what we observed for VI. As a result, the problem in the results for acridones can similarly be attributed to differential electron correlation between the ground and excited state being treated poorly by TD-DFT.

7. Fluorescence lifetime calculations for all functionals and molecules investigated

	B3LYP	ВМК	CAM- B3LYP	LC-BLYP	M06	M06-2X	M11	PBE0	ωB97	ωB97X	LC- BLYP*	ωB97X*
T	23974	26432	27026	30832	24033	27244	28740	24722	29389	28581	25922	26381
I	(0.0862)	(0.1071)	(0.1198)	(0.1774)	(0.0917)	(0.1130)	(0.1374)	(0.0919)	(0.1448)	(0.1387)	(0.1123)	(0.1167)
п	21723	24251	24832	28218	21899	25173	26650	22472	27345	26459	23504	24013
11	(0.1129)	(0.1404)	(0.1587)	(0.2037)	(0.1208)	(0.1499)	(0.1823)	(0.1210)	(0.1950)	(0.1851)	(0.1459)	(0.1516)
TTT	22256	24637	25363	28672	22324	25445	27324	23008	28018	27211	24197	24789
111	(0.3247)	(0.3791)	(0.3927)	(0.4495)	(0.3296)	(0.3850)	(0.4260)	(0.3399)	(0.4427)	(0.4307)	(0.3595)	(0.3809)
TX 7	22614	25179	25813	29295	22797	26006	27770	23343	28447	27617	24669	25160
IV	(0.3424)	(0.4031)	(0.4158)	(0.4808)	(0.3546)	(0.4103)	(0.4510)	(0.3587)	(0.4655)	(0.4527)	(0.3798)	(0.3991)
V	24609	26800	27656	30815	24412	27646	29124	25250	29929	29182	25228	26274
v	(0.1311)	(0.1836)	(0.1871)	(0.2396)	(0.1485)	(0.1875)	(0.2362)	(0.1460)	(0.2344)	(0.2218)	(0.1748)	(0.1677)
VI	26770	29400	29930	32983	27665	29898	31041	27731	32086	31430	29177	29999
VI	(0.0722)	(0.0944)	(0.1045)	(0.1347)	(0.0756)	(0.1023)	(0.1193)	(0.0780)	(0.1256)	(0.1196)	(0.1128)	(0.1162)
1711	26057	28605	29169	32185	26943	29047	30134	26977	31296	30652	27481	28416
VII	(0.0827)	(0.1058)	(0.1181)	(0.1514)	(0.0862)	(0.1152)	(0.1348)	(0.0888)	(0.1404)	(0.1339)	(0.1068)	(0.1101)
1 /111	26592	29229	29783	32840	27478	29695	30773	27556	31928	31291	27600	28677
VIII	(0.1009)	(0.1314)	(0.1464)	(0.1887)	(0.1060)	(0.1429)	(0.1676)	(0.1088)	(0.1758)	(0.1674)	(0.1254)	(0.1321)

Table S14: Vertical energies (in cm⁻¹) and oscillator strengths for the calculation of fluorescence lifetimes using Scheme A. The results were obtained at the ground state optimised geometries in solvent using the state-specific solvation method.

	B3LYP	BMK	CAM-	LC-BLYP	M06	M06-2X	M11	PBE0	ωB97	ωB97X	LC-	ωB97X*
			B3LYP								BLYP*	
	29659	32998	33676	37210	30038	33957	35833	30784	36349	35659	32400	33136
IA	(0.7983)	(0.8887)	(0.8557)	(0.8426)	(0.7856)	(0.8693)	(0.8739)	(0.8321)	(0.8489)	(0.8615)	(0.8340)	(0.8630)
v	27241	30127	31296	34855	27629	31579	33642	28196	34044	33290	29576	30296
Λ	(1.8994)	(1.9951)	(1.9309)	(1.8462)	(1.7950)	(2.0016)	(2.0034)	(1.9493)	(1.8627)	(1.9026)	(1.9429)	(1.9550)
VI	34280	37109	38169	41038	33926	38241	39694	35351	40491	40089	36606	38117
Л	(0.9074)	(1.0009)	(0.9497)	(0.9049)	(0.8246)	(0.9995)	(0.9685)	(0.9340)	(0.9295)	(0.9513)	(0.9721)	(0.9612)
VII	31693	35052	36420	39569	31723	36251	37909	32963	38970	38536	34175	36002
ЛП	(1.2896)	(1.5185)	(1.4811)	(1.4468)	(1.2646)	(1.5209)	(1.5031)	(1.3766)	(1.4780)	(1.5011)	(1.4746)	(1.4861)
VIII	29334	31036	31694	33940	30480	31982	30802	29993	34251	33429	30774	32294
АШ	(0.1586)	(0.1811)	(0.1882)	(0.2209)	(0.1621)	(0.1927)	(0.2028)	(0.1690)	(0.2082)	(0.2016)	(0.1845)	(0.1898)
VIII	29724	31677	32364	34675	31301	32777	31542	30488	34887	34078	31064	32477
ЛIV	(0.1371)	(0.1589)	(0.1672)	(0.2005)	(0.1414)	(0.1733)	(0.1835)	(0.1469)	(0.1905)	(0.1828)	(0.1599)	(0.1664)
XXX7	28952	31365	31876	34643	30352	32683	31662	29780	34598	33660	30410	31980
XV	(0.0877)	(0.1037)	(0.1145)	(0.1453)	(0.0892)	(0.1177)	(0.1273)	(0.0938)	(0.1367)	(0.1283)	(0.1071)	(0.1136)
XXVI	27244	27244	27244	27244	27244	27244	27244	27244	27244	27244	27244	27244
AVI	(0.1403)	(0.1742)	(0.1857)	(0.2360)	(0.1494)	(0.1891)	(0.2065)	(0.1518)	(0.2203)	(0.2085)	(0.1622)	(0.1769)

	B3LYP	BMK	CAM-	LC-	M06	M06-2X	M11	PBE0	ωB97	ωB97X	LC-	ωB97X*
			B3LYP	BLYP							BLYP*	
	28329	28329	28329	28329	28329	28329	28329	28329	28329	28329	28329	28329
AVII	(0.1347)	(0.1594)	(0.1692)	(0.2079)	(0.1401)	(0.1761)	(0.1879)	(0.1455)	(0.1982)	(0.1878)	(0.1512)	(0.1631)
WVIII	32012	35254	35332	38768	33769	36036	35677	33128	38087	37120	33161	34779
AVIII	(0.1274)	(0.1456)	(0.1570)	(0.1880)	(0.1240)	(0.1473)	(0.1680)	(0.1372)	(0.1700)	(0.1667)	(0.1426)	(0.1486)
	25204	28488	29049	32480	26557	29412	30469	26453	31995	31180	27832	29155
XIX	(0.2978)	(0.3852)	(0.3940)	(0.4620)	(0.3276)	(0.4033)	(0.4367)	(0.3262)	(0.4309)	(0.4222)	(0.3694)	(0.3838)
VV	26746	29709	30484	33609	28166	30587	31626	27829	33209	32487	28917	30169
АА	(0.3846)	(0.4690)	(0.4717)	(0.5282)	(0.3990)	(0.4766)	(0.5036)	(0.4116)	(0.4944)	(0.4896)	(0.4293)	(0.4483)
VVI	25913	29164	30168	33541	27511	29996	31302	27112	32832	31993	28349	29321
ΑΛΙ	(0.3833)	(0.4849)	(0.5067)	(0.5712)	(0.4080)	(0.5123)	(0.5299)	(0.4119)	(0.5452)	(0.5340)	(0.4408)	(0.4725)
VVII	24293	27624	28402	32120	25778	28428	29972	25540	31155	30462	26726	27688
АЛП	(0.3508)	(0.4621)	(0.4770)	(0.5650)	(0.3875)	(0.4908)	(0.5332)	(0.3825)	(0.5367)	(0.5208)	(0.4220)	(0.4480)
VVIII	24504	27670	28582	32174	25947	28623	30012	25585	31580	30781	26491	27705
АЛШ	(0.3380)	(0.4266)	(0.4385)	(0.4901)	(0.3499)	(0.4379)	(0.4556)	(0.3632)	(0.4692)	(0.4640)	(0.3807)	(0.4127)
VVIV	24665	27515	28439	31874	25936	28308	29749	25703	31006	30306	26257	27569
ΛΛΙΥ	(0.5212)	(0.6323)	(0.6474)	(0.7376)	(0.5421)	(0.6529)	(0.6920)	(0.5554)	(0.7044)	(0.6888)	(0.5625)	(0.6088)

	B3LYP	BMK	CAM-B3LYP	LC-BLYP	M06	M06-2X	M11	PBE0	ωB97	ωB97X	LC-BLYP*	ωB97X*
Ι	13.77	9.12	7.80	4.05	12.87	8.13	6.01	12.15	5.45	6.02	9.04	8.40
Π	12.23	7.87	6.64	3.99	11.23	6.83	5.01	10.65	4.44	5.01	8.07	7.44
III	5.04	3.52	3.21	2.19	4.93	3.25	2.54	4.50	2.33	2.54	3.85	3.46
IV	4.11	2.82	2.60	1.74	3.91	2.59	2.07	3.68	1.91	2.08	3.11	2.85
V	9.32	5.61	5.17	3.25	8.36	5.16	3.69	7.95	3.52	3.92	6.65	6.39
VI	15.53	9.84	8.58	5.48	13.89	8.78	6.98	13.38	6.20	6.79	8.46	7.77
VII	14.53	9.42	8.12	5.19	13.04	8.39	6.66	12.62	5.92	6.48	10.10	9.17
VIII	11.50	7.30	6.32	4.02	10.25	6.50	5.16	9.92	4.57	5.00	8.58	7.54
IX	1.00	0.72	0.72	0.60	0.98	0.69	0.62	0.89	0.62	0.64	0.80	0.73
X	0.47	0.37	0.35	0.30	0.49	0.33	0.29	0.43	0.31	0.32	0.39	0.37
XI	0.67	0.52	0.52	0.47	0.76	0.49	0.47	0.62	0.47	0.47	0.55	0.52
XII	0.47	0.32	0.31	0.27	0.48	0.30	0.28	0.41	0.27	0.27	0.35	0.31

Table S15: Fluorescence lifetimes (in ns) of all molecules investigated in this study calculated using Scheme A. All results are in solvent

	B3LYP	BMK	CAM-B3LYP	LC-BLYP	M06	M06-2X	M11	PBE0	ωB97	ωB97X	LC-BLYP*	ωB97X *
XIII	5.06	3.96	3.64	2.71	4.57	3.49	3.59	4.53	2.81	3.05	3.94	3.47
XIV	6.01	4.57	4.15	3.01	5.23	3.90	3.99	5.32	3.13	3.41	4.71	4.13
XV	10.22	7.37	6.45	4.31	9.12	5.97	5.89	9.03	4.58	5.16	7.59	6.46
XVI	7.22	4.87	4.36	2.88	6.18	4.10	4.07	6.33	3.06	3.42	5.67	4.65
XVII	6.28	4.62	4.11	2.83	5.50	3.79	3.86	5.51	2.93	3.28	5.18	4.32
XVIII	4.45	3.21	2.96	2.06	4.09	3.03	2.72	3.86	2.35	2.53	3.70	3.23
XIX	4.34	2.60	2.43	1.64	3.52	2.31	1.99	3.58	1.81	1.95	2.83	2.47
XX	2.56	1.68	1.58	1.15	2.19	1.55	1.37	2.20	1.25	1.33	1.93	1.69
XXI	3.25	2.00	1.78	1.26	2.67	1.78	1.57	2.75	1.38	1.49	2.32	2.02
XXII	3.74	2.18	1.99	1.31	2.99	1.94	1.60	3.10	1.46	1.58	2.55	2.23
XXIII	3.97	2.44	2.20	1.54	3.36	2.20	1.91	3.37	1.66	1.78	2.97	2.50
XXIV	1.97	1.30	1.18	0.82	1.71	1.19	1.01	1.70	0.91	0.98	1.60	1.34

	B3LYP	ВМК	CAM- B3LYP	LC-BLYP	M06	M06-2X	M11	PBE0	ωB97	ωB97X	LC- BLYP*	ωB97X*
T	20950	22539	22891	25157	20851	23011	23959	21557	23990	23706	22386	22571
1	(0.0856)	(0.1061)	(0.1189)	(0.1764)	(0.0909)	(0.1112)	(0.1348)	(0.0910)	(0.1440)	(0.1374)	(0.1110)	(0.1156)
п	18943	20651	20980	22736	18963	21244	22158	19556	22226	21880	20291	20521
11	(0.1086)	(0.1359)	(0.1542)	(0.1972)	(0.1167)	(0.1446)	(0.1758)	(0.1165)	(0.1892)	(0.1800)	(0.1417)	(0.1474)
ш	19440	20876	21182	22836	19332	21309	22426	20049	22493	22159	20585	20908
111	(0.3224)	(0.3777)	(0.3923)	(0.4539)	(0.3286)	(0.3826)	(0.4247)	(0.3377)	(0.4456)	(0.4312)	(0.3569)	(0.3797)
IV	19858	21410	21687	23479	19848	21863	22912	20439	22978	22646	21087	21325
1 V	(0.3414)	(0.4032)	(0.4167)	(0.4847)	(0.3542)	(0.4101)	(0.4520)	(0.3576)	(0.4697)	(0.4546)	(0.3793)	(0.3999)
V	20516	21984	22505	24119	20277	22355	23414	20971	23534	23326	21132	21728
v	(0.1877)	(0.2280)	(0.2308)	(0.2733)	(0.1993)	(0.2369)	(0.2705)	(0.2057)	(0.2735)	(0.2590)	(0.2188)	(0.2147)
¥ 71	24372	26732	27275	29938	25165	27230	28350	25297	29191	28670	26815	27446
VI	(0.0710)	(0.0943)	(0.1054)	(0.1388)	(0.0750)	(0.1035)	(0.1215)	(0.0773)	(0.1296)	(0.1225)	(0.1137)	(0.1169)
VII	23446	25865	26453	29292	24318	26299	27411	24330	28470	27896	24911	25709
VII	(0.0777)	(0.1021)	(0.1151)	(0.1529)	(0.0818)	(0.1127)	(0.1331)	(0.0842)	(0.1416)	(0.1337)	(0.1026)	(0.1063)
V /111	24292	26719	27293	30033	25105	27194	28273	25219	29264	28740	25430	26333
V 111	(0.0973)	(0.1289)	(0.1449)	(0.1906)	(0.1029)	(0.1417)	(0.1675)	(0.1056)	(0.1778)	(0.1684)	(0.1230)	(0.1300)

Table S16: Vertical energies (in cm⁻¹) and oscillator strengths for the calculation of fluorescence lifetimes using Schemes B and C. The results were obtained at the excited state optimised geometries in solvent using the state-specific solvation method.

	B3LYP	BMK	CAM-	LC-BLYP	M06	M06-2X	M11	PBE0	ωB97	ωB97X	LC-	ωB97X*
			B3LYP								BLYP*	
	25692	27487	27445	29303	25621	27820	28937	26509	28699	28391	26912	27175
IX	(0.8993)	(0.9665)	(0.9205)	(0.9117)	(0.8708)	(0.9356)	(0.9258)	(0.9226)	(0.9106)	(0.9189)	(0.8791)	(0.9201)
v	24172	26019	26707	29186	24260	27049	28576	24921	28580	28094	25721	25718
Λ	(2.0368)	(2.0944)	(2.0118)	(1.9134)	(1.9082)	(2.0749)	(2.0386)	(2.0738)	(1.9269)	(1.9627)	(2.0035)	(2.0247)
VI	26859	28500	28646	30278	26575	29027	30151	27705	29882	29669	28240	28537
Л	(1.1282)	(1.1802)	(1.1317)	(1.0997)	(1.0495)	(1.1544)	(1.1268)	(1.1534)	(1.1146)	(1.1268)	(1.0982)	(1.1440)
VII	24741	26657	27205	29194	24664	27397	28959	25650	28804	28558	26466	27060
XII	(1.6331)	(1.7145)	(1.6449)	(1.5809)	(1.5485)	(1.6694)	(1.6144)	(1.6711)	(1.6000)	(1.6206)	(1.6032)	(1.6567)
	26640	28113	28636	30508	27372	28559	28794	27517	29883	29550	28068	28760
XIII	(0.1293)	(0.1527)	(0.1662)	(0.2047)	(0.1379)	(0.1745)	(0.1829)	(0.1414)	(0.1993)	(0.1880)	(0.1644)	(0.1722)
X/IX /	26806	28510	29095	31348	27757	28993	29279	27722	30633	30199	28076	28902
XIV	(0.1037)	(0.1260)	(0.1374)	(0.1755)	(0.1122)	(0.1475)	(0.1555)	(0.1146)	(0.1719)	(0.1596)	(0.1291)	(0.1377)
XXX7	22578	24071	25018	27487	23573	24896	25150	23253	26561	26060	23735	24698
XV	(0.0615)	(0.0756)	(0.0839)	(0.1145)	(0.0663)	(0.0889)	(0.0943)	(0.0666)	(0.1076)	(0.0976)	(0.0745)	(0.0822)
VVI	22530	24709	25328	28085	23338	25091	25643	23281	27224	26634	23614	24734
AVI	(0.1099)	(0.1390)	(0.1484)	(0.1967)	(0.1224)	(0.1541)	(0.1640)	(0.1191)	(0.1845)	(0.1707)	(0.1231)	(0.1390)
	B3LYP	BMK	CAM-	LC-	M06	M06-2X	M11	PBE0	ωB97	ωB97X	LC-	ωB97X *

			B3LYP	BLYP							BLYP*	
	23415	25393	25760	28012	24435	25620	25985	24206	27397	26897	24174	25296
AVII	(0.1054)	(0.1229)	(0.1368)	(0.1746)	(0.1104)	(0.1447)	(0.1501)	(0.1150)	(0.1683)	(0.1558)	(0.1153)	(0.1295)
VVIII	24499	25582	26399	28215	25254	26223	26108	24889	27734	27359	25066	26110
луш	(0.1417)	(0.1675)	(0.1775)	(0.2160)	(0.1481)	(0.1826)	(0.1907)	(0.1541)	(0.2053)	(0.1949)	(0.1560)	(0.1687)
VIV	20126	23992	24218	25850	22065	24473	24961	21705	25283	25210	23223	24056
ЛІЛ	(0.2346)	(0.3776)	(0.4019)	(0.4907)	(0.2926)	(0.4115)	(0.4496)	(0.2794)	(0.4629)	(0.4472)	(0.3689)	(0.3920)
VV	23816	26774	27071	28432	25439	26786	27323	25020	27859	27815	25771	26609
лл	(0.3843)	(0.4981)	(0.5096)	(0.5723)	(0.4191)	(0.5133)	(0.5412)	(0.4213)	(0.5481)	(0.5374)	(0.4598)	(0.4863)
XXI	22539	26480	27122	28743	25022	26656	27428	23979	28125	28045	25661	26525
ΛΛΙ	(0.3466)	(0.5172)	(0.5450)	(0.6219)	(0.4154)	(0.5481)	(0.5797)	(0.3958)	(0.5964)	(0.5827)	(0.4772)	(0.5118)
VVII	20701	24991	25637	27534	22564	25779	26522	22390	26899	26782	24147	25011
АЛП	(0.2548)	(0.4318)	(0.4676)	(0.5718)	(0.3148)	(0.4829)	(0.5323)	(0.3039)	(0.5408)	(0.5238)	(0.4011)	(0.4329)
VVIII	21128	24566	25232	26891	22892	24901	25579	22345	26388	26235	23360	24412
АЛШ	(0.3086)	(0.4614)	(0.4947)	(0.5818)	(0.3581)	(0.4949)	(0.5320)	(0.3503)	(0.5592)	(0.5428)	(0.4148)	(0.4553)
VVIV	22708	24880	25157	26345	23795	25024	25433	23655	25821	25755	23651	24568
ллі у	(0.5003)	(0.6364)	(0.6486)	(0.7105)	(0.5424)	(0.6517)	(0.6755)	(0.5450)	(0.6817)	(0.6732)	(0.5595)	(0.6088)

Table S17: Fluorescence lifetimes (in ns) of all molecules investigated in this study calculated using Scheme B. All results are in solvent

	B3LYP	BMK	CAM-B3LYP	LC-BLYP	M06	M06-2X	M11	PBE0	ωB97	ωB97X	LC-BLYP*	ωB97X *
Ι	18.15	12.65	10.94	6.11	17.24	11.58	8.81	16.12	8.22	8.83	12.26	11.58
II	16.74	11.23	9.58	6.36	15.52	9.96	7.52	14.63	6.94	7.53	11.16	10.48
III	6.65	4.92	4.61	3.43	6.60	4.67	3.79	5.97	3.60	3.83	5.36	4.88
IV	5.35	3.89	3.67	2.69	5.16	3.67	3.03	4.82	2.90	3.09	4.27	3.96
V	9.37	6.72	6.33	4.65	9.03	6.25	4.98	8.18	4.89	5.25	7.57	7.30
VI	19.30	12.07	10.39	6.54	17.16	10.60	8.33	16.44	7.36	8.08	10.05	9.36
VII	19.43	12.14	10.30	6.30	17.18	10.64	8.28	16.64	7.21	7.96	13.01	11.81
VIII	14.48	9.03	7.70	4.82	12.82	7.92	6.19	12.36	5.44	5.96	10.42	9.21
IX	1.17	0.95	1.00	0.89	1.22	0.96	0.90	1.07	0.93	0.94	1.09	1.02
X	0.56	0.47	0.46	0.41	0.59	0.44	0.40	0.52	0.42	0.43	0.50	0.50
XI	0.88	0.75	0.77	0.71	0.97	0.74	0.70	0.81	0.72	0.72	0.82	0.77
XII	0.61	0.50	0.50	0.45	0.64	0.48	0.45	0.55	0.46	0.46	0.54	0.50

	B3LYP	BMK	CAM-B3LYP	LC-BLYP	M06	M06-2X	M11	PBE0	ωB97	ωB97X	LC-BLYP*	ωB97X *
XIII	7.57	5.75	5.08	3.62	6.70	4.86	4.56	6.47	3.87	4.20	5.35	4.85
XIV	9.84	7.16	6.28	4.22	8.43	5.89	5.48	8.30	4.51	5.00	7.19	6.35
XV	24.29	17.38	14.46	8.75	20.58	13.78	12.74	21.12	9.97	11.43	18.14	15.14
XVI	13.59	8.90	7.92	4.84	11.32	7.78	7.00	11.73	5.49	6.21	11.03	8.87
XVII	11.87	8.66	7.52	4.97	10.37	7.19	6.74	10.16	5.39	6.04	10.17	8.24
XVIII	6.92	5.37	4.74	3.40	6.20	4.67	4.52	6.15	3.70	4.01	5.99	5.10
XIX	9.13	3.85	3.52	2.49	5.96	3.36	2.94	6.51	2.76	2.88	4.19	3.65
XX	3.32	1.97	1.87	1.49	2.61	1.90	1.72	2.72	1.62	1.66	2.30	2.03
XXI	4.91	2.30	2.06	1.59	3.23	2.13	1.88	3.76	1.73	1.78	2.64	2.30
XXII	7.17	2.85	2.49	1.75	4.84	2.38	2.03	5.11	1.94	2.02	3.28	2.83
XXIII	6.10	2.92	2.55	1.88	4.38	2.62	2.30	4.76	2.03	2.12	3.60	2.98
XXIV	2.42	1.57	1.50	1.25	2.02	1.51	1.41	2.04	1.35	1.38	1.97	1.68

Table S18: Computed value of $\frac{1}{\langle \tilde{v}_f^{-3} \rangle}$ for all molecules for the calculation of fluorescence lifetimes using Scheme C. All results are in solvent

	B3LYP	BMK	CAM-B3LYP	LC-BLYP	M06	M06-2X	M11	PBE0	ωB97	ωB97X	LC-BLYP*	ωB97X *
I	0.821	1.018	0.854	1.382	0.809	0.861	0.959	0.896	1.200	1.168	1.085	0.993
П	0.604	0.640	0.663	1.020	0.607	0.684	0.766	0.666	0.961	0.922	0.833	0.739
III	0.540	0.630	0.656	1.021	0.539	0.670	0.763	0.600	0.716	0.711	0.676	0.777
IV	0.589	0.726	0.720	0.838	0.582	0.731	0.824	0.642	0.797	0.782	0.735	0.761
V	0.776	0.944	1.019	1.223	0.745	0.999	1.131	0.831	1.143	1.122	1.036	0.842
VI	1.199	1.654	1.766	2.343	1.330	1.742	1.986	1.350	2.151	2.046	1.794	1.668
VII	1.100	1.475	1.624	2.176	1.223	1.521	1.796	1.232	1.974	1.892	1.644	1.302
VIII	1.135	1.700	1.805	2.412	1.395	1.733	2.034	1.373	2.234	2.126	1.868	1.372
IX	1.266	1.469	1.447	1.664	1.260	1.497	1.655	1.388	1.471	1.459	1.401	1.391
X	1.079	1.296	1.355	1.710	1.078	1.426	1.637	1.177	1.600	1.537	1.411	1.378
XI	1.731	2.053	2.035	2.350	1.528	2.079	2.395	1.871	2.263	2.203	2.121	1.978

XII	1.353	1.677	1.752	2.145	1.340	1.799	2.095	1.506	2.058	1.990	1.869	1.636
-----	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------

	B3LYP	BMK	CAM-B3LYP	LC-BLYP	M06	M06-2X	M11	PBE0	ωB97	ωB97X	LC-BLYP*	ωB97X*
XIII	1.398	1.903	1.990	2.489	1.552	1.914	2.089	1.520	2.249	2.188	1.980	1.829
XIV	1.506	1.993	2.084	2.644	1.677	1.928	2.123	1.725	2.416	2.282	2.016	1.750
XV	0.868	1.127	1.205	1.626	0.935	1.214	1.268	0.961	1.469	1.357	1.223	1.019
XVI	0.949	1.277	1.344	1.860	1.043	1.262	1.423	1.013	1.729	1.373	1.386	1.058
XVII	1.030	1.347	1.438	1.844	1.081	1.335	1.501	1.164	1.725	1.625	1.449	1.152
XVIII	1.116	1.318	1.459	1.836	1.220	1.457	1.388	1.130	1.474	1.503	1.466	1.207
XIX	0.532	1.008	0.952	1.095	0.791	0.961	1.044	0.702	0.951	0.986	1.296	0.909
XX	1.059	1.526	1.523	1.683	1.285	1.444	1.548	1.258	1.452	1.562	1.528	1.328
XXI	0.805	1.478	1.781	1.750	1.246	1.675	1.581	0.987	1.980	1.666	1.602	1.327
XXII	0.642	1.174	1.317	1.535	1.023	1.330	1.426	0.810	1.444	1.462	1.406	1.061
XXIII	0.737	1.183	1.259	1.367	0.951	1.207	1.276	0.884	1.301	1.377	1.310	1.128
XXIV	0.866	1.202	1.168	1.243	0.990	1.159	1.180	0.997	1.204	1.228	1.244	1.047

	B3LYP	BMK	CAM-B3LYP	LC-BLYP	M06	M06-2X	M11	PBE0	ωB97	ωB97X	LC-BLYP*	ωB97X *
I	20.34	14.22	15.36	7.03	19.32	16.38	12.64	18.02	9.46	10.07	13.85	13.03
П	18.83	15.45	13.34	7.33	17.44	13.96	10.68	16.42	7.93	8.56	12.62	11.78
III	9.06	7.12	6.67	4.00	8.86	6.74	5.60	8.02	5.71	5.86	6.02	6.16
IV	7.11	5.26	5.20	4.16	6.93	5.25	4.43	6.41	4.42	4.59	5.26	4.93
V	10.42	7.56	7.08	5.34	10.11	6.99	5.66	9.08	5.57	5.94	8.49	8.11
VI	23.30	13.95	11.94	7.49	20.57	12.28	9.55	19.71	8.51	9.31	11.62	10.88
VII	22.77	14.25	11.74	7.28	20.20	12.72	9.49	19.45	8.42	9.13	15.45	14.42
VIII	18.29	10.13	8.67	5.42	14.55	9.19	6.88	14.45	6.10	6.66	12.49	10.34
IX	1.57	1.35	1.43	1.34	1.63	1.38	1.31	1.44	1.49	1.47	1.53	1.53
X	0.73	0.64	0.65	0.59	0.78	0.61	0.57	0.68	0.62	0.62	0.62	0.63
XI	0.99	0.84	0.89	0.84	1.19	0.87	0.80	0.92	0.85	0.86	0.93	0.90

Table S19: Fluorescence lifetimes (in ns) of all molecules investigated in this study calculated using Scheme C. All results are in solvent.

XII 0.68	58 0).56	0.57	0.52	0.72	0.55	0.52	0.62	0.53	0.54	0.61	0.57
-----------------	------	------	------	------	------	------	------	------	------	------	------	------

B3LYP	BMK	CAM-B3LYP	LC-BLYP	M06	M06-2X	M11	PBE0	ωB97	ωB97X	LC-BLYP*	ωB97X*
10.24	6.72	5.99	4.13	8.85	5.91	5.21	8.88	4.60	4.96	6.46	5.85
12.58	8.32	7.42	4.92	10.76	7.44	6.48	10.26	5.37	6.04	9.09	7.94
32.20	21.52	18.79	11.17	28.85	17.52	15.99	27.63	12.72	14.91	23.81	19.30
16.38	10.52	9.58	5.77	13.80	9.74	8.29	14.61	6.41	8.55	13.73	10.79
14.79	10.52	8.94	5.93	13.99	9.06	7.88	12.38	6.42	7.24	12.47	9.85
9.12	6.82	5.97	4.16	8.19	5.78	5.79	8.39	5.36	5.46	7.81	6.81
13.99	5.27	5.25	3.93	8.09	5.13	4.39	9.47	4.69	4.68	5.77	5.72
4.23	2.48	2.43	2.04	3.34	2.53	2.27	3.38	2.42	2.29	2.96	2.21
6.99	2.89	2.30	2.15	4.06	2.41	2.46	5.25	1.94	2.36	3.36	2.84
9.90	3.79	3.18	2.38	5.44	3.07	2.66	7.08	2.61	2.65	4.36	3.62
7.80	3.66	3.25	2.67	5.52	3.36	3.01	6.01	2.87	2.79	4.07	3.40
3.27	2.01	2.05	1.83	2.74	2.04	1.97	2.71	1.93	1.91	2.50	2.20
	B3LYP 10.24 12.58 32.20 16.38 14.79 9.12 13.99 4.23 6.99 9.90 7.80 3.27	B3LYP BMK 10.24 6.72 12.58 8.32 32.20 21.52 16.38 10.52 14.79 10.52 9.12 6.82 13.99 5.27 4.23 2.48 6.99 2.89 9.90 3.79 7.80 3.66 3.27 2.01	B3LYPBMKCAM-B3LYP10.246.725.9912.588.327.4232.2021.5218.7916.3810.529.5814.7910.528.949.126.825.9713.995.275.254.232.482.436.992.892.309.903.793.187.803.663.253.272.012.05	B3LYPBMKCAM-B3LYPLC-BLYP10.246.725.994.1312.588.327.424.9232.2021.5218.7911.1716.3810.529.585.7714.7910.528.945.939.126.825.974.1613.995.275.253.934.232.482.432.046.992.892.302.159.903.793.182.387.803.663.252.673.272.012.051.83	B3LYPBMKCAM-B3LYPLC-BLYPM0610.246.725.994.138.8512.588.327.424.9210.7632.2021.5218.7911.1728.8516.3810.529.585.7713.8014.7910.528.945.9313.999.126.825.974.168.1913.995.275.253.938.094.232.482.432.043.346.992.892.302.154.069.903.793.182.385.447.803.663.252.675.523.272.012.051.832.74	B3LYPBMKCAM-B3LYPLC-BLYPM06M06-2X10.246.725.994.138.855.9112.588.327.424.9210.767.4432.2021.5218.7911.1728.8517.5216.3810.529.585.7713.809.7414.7910.528.945.9313.999.069.126.825.974.168.195.7813.995.275.253.938.095.134.232.482.432.043.342.536.992.892.302.154.062.419.903.793.182.385.443.077.803.663.252.675.523.363.272.012.051.832.742.04	B3LYPBMKCAM-B3LYPLC-BLYPM06M06-2XM1110.246.725.994.138.855.915.2112.588.327.424.9210.767.446.4832.2021.5218.7911.1728.8517.5215.9916.3810.529.585.7713.809.748.2914.7910.528.945.9313.999.067.889.126.825.974.168.195.785.7913.995.275.253.938.095.134.394.232.482.432.043.342.532.276.992.892.302.154.062.412.469.903.793.182.385.443.072.667.803.663.252.675.523.363.013.272.012.051.832.742.041.97	B3LYP BMK CAM-B3LYP LC-BLYP M06 M06-2X M11 PBE0 10.24 6.72 5.99 4.13 8.85 5.91 5.21 8.88 12.58 8.32 7.42 4.92 10.76 7.44 6.48 10.26 32.20 21.52 18.79 11.17 28.85 17.52 15.99 27.63 16.38 10.52 9.58 5.77 13.80 9.74 8.29 14.61 14.79 10.52 8.94 5.93 13.99 9.06 7.88 12.38 9.12 6.82 5.97 4.16 8.19 5.78 5.79 8.39 13.99 5.27 5.25 3.93 8.09 5.13 4.39 9.47 4.23 2.48 2.43 2.04 3.34 2.53 2.27 3.38 6.99 2.89 2.30 2.15 4.06 2.41 2.46 5.25 9.90 3.79	B3LYP BMK CAM-B3LYP LC-BLYP M06 M06-2X M11 PBE0 ω B97 10.24 6.72 5.99 4.13 8.85 5.91 5.21 8.88 4.60 12.58 8.32 7.42 4.92 10.76 7.44 6.48 10.26 5.37 32.20 21.52 18.79 11.17 28.85 17.52 15.99 27.63 12.72 16.38 10.52 9.58 5.77 13.80 9.74 8.29 14.61 6.41 14.79 10.52 8.94 5.93 13.99 9.06 7.88 12.38 6.42 9.12 6.82 5.97 4.16 8.19 5.78 5.79 8.39 5.36 13.99 5.27 5.25 3.93 8.09 5.13 4.39 9.47 4.69 4.23 2.48 2.43 2.04 3.34 2.53 2.27 3.38 2.42 6.99 2.89	B3LYP BMK CAM-B3LYP LC-BLYP M06 M06-2X M11 PBE0 $\alpha B97$ $\alpha B97X$ 10.24 6.72 5.99 4.13 8.85 5.91 5.21 8.88 4.60 4.96 12.58 8.32 7.42 4.92 10.76 7.44 6.48 10.26 5.37 6.04 32.20 21.52 18.79 11.17 28.85 17.52 15.99 27.63 12.72 14.91 16.38 10.52 9.58 5.77 13.80 9.74 8.29 14.61 6.41 8.55 14.79 10.52 8.94 5.93 13.99 9.06 7.88 12.38 6.42 7.24 9.12 6.82 5.97 4.16 8.19 5.78 5.79 8.39 5.36 5.46 13.99 5.27 5.25 3.93 8.09 5.13 4.39 9.47 4.69 4.68 4.23 2.48 2.43 2.04 <th>B3LYP BMK CAM-B3LYP LC-BLYP M06 M06-2X M11 PBE0 $\infty B97$ $\omega B97X$ LC-BLYP* 10.24 6.72 5.99 4.13 8.85 5.91 5.21 8.88 4.60 4.96 6.46 12.58 8.32 7.42 4.92 10.76 7.44 6.48 10.26 5.37 6.04 9.09 32.20 21.52 18.79 11.17 28.85 17.52 15.99 27.63 12.72 14.91 23.81 16.38 10.52 9.58 5.77 13.80 9.74 8.29 14.61 6.41 8.55 13.73 14.79 10.52 8.94 5.93 13.99 9.06 7.88 12.38 6.42 7.24 12.47 9.12 6.82 5.97 4.16 8.19 5.78 5.79 8.39 5.36 5.46 7.81 13.99 5.27 5.25 3.93 8.09 5.13 4.39 <</th>	B3LYP BMK CAM-B3LYP LC-BLYP M06 M06-2X M11 PBE0 $\infty B97$ $\omega B97X$ LC-BLYP* 10.24 6.72 5.99 4.13 8.85 5.91 5.21 8.88 4.60 4.96 6.46 12.58 8.32 7.42 4.92 10.76 7.44 6.48 10.26 5.37 6.04 9.09 32.20 21.52 18.79 11.17 28.85 17.52 15.99 27.63 12.72 14.91 23.81 16.38 10.52 9.58 5.77 13.80 9.74 8.29 14.61 6.41 8.55 13.73 14.79 10.52 8.94 5.93 13.99 9.06 7.88 12.38 6.42 7.24 12.47 9.12 6.82 5.97 4.16 8.19 5.78 5.79 8.39 5.36 5.46 7.81 13.99 5.27 5.25 3.93 8.09 5.13 4.39 <

8. Ground and excited state optimised geometries for all molecules for the LC-BLYP* functional

Ι

Ground state optimised structure	Excited state optimised structure
C -9.638675 -1.125724 -0.002854	C -9.678733 -1.126941 -0.002904
C -8.269291 -1.110586 0.000668	C -8.273235 -1.097651 0.000641
C -7.550096 0.127156 0.003554	C -7.563788 0.118187 0.003467
C -8.288065 1.358646 0.002666	C -8.307438 1.346862 0.002591
C -9.716167 1.306017 -0.001027	C -9.708062 1.296727 -0.000944
C -10.368437 0.100034 -0.003694	C -10.394650 0.065813 -0.003679
C -6.150732 0.163530 0.007205	C -6.147695 0.158413 0.007121
C -7.570031 2.576178 0.005486	C -7.575692 2.585971 0.005414
C -6.156992 2.612267 0.009147	C -6.137143 2.623506 0.009218
C -5.439119 1.368973 0.010015	C -5.424557 1.376591 0.010021
C -4.007849 1.396202 0.013747	C -4.017162 1.405903 0.013687
H -3.470382 0.442050 0.014407	H -3.472210 0.455839 0.014299
C -3.329168 2.585634 0.016437	C -3.308499 2.619971 0.016547
C -4.046024 3.818967 0.015542	C -4.003202 3.825204 0.015785
C -5.417026 3.834855 0.012013	C -5.412668 3.823236 0.012139
H -5.594695 -0.781540 0.007887	H -5.591880 -0.786254 0.007762
H -10.179963 -2.076189 -0.005049	H -10.201241 -2.087571 -0.005033
H -7.696521 -2.044017 0.001340	H -7.707741 -2.035691 0.001249
H -10.279581 2.244350 -0.001691	H -10.274597 2.233664 -0.001564
H -11.462135 0.074583 -0.006509	H -11.487913 0.058210 -0.006403
H -2.235433 2.596874 0.019283	H -2.215007 2.609816 0.019358
H -3.492412 4.762537 0.017713	H -3.465391 4.777061 0.018000
H -5.963331 4.783259 0.011335	H -5.956199 4.773712 0.011553
C -8.296091 3.810282 0.004609	C -8.292910 3.804627 0.004355
N -8.888751 4.817612 0.003897	N -8.889353 4.816745 0.003448

-	-	-
	L	L

Ground state optimised structure	Excited state optimised structure
C -7.737310 -0.662219 -0.014677	C -7.775489 -0.665419 -0.014857
C -6.366751 -0.664416 -0.009804	C -6.371269 -0.649622 -0.010023
C -5.639508 0.565645 -0.010501	C -5.653336 0.559958 -0.010598
C -6.366431 1.802119 -0.016373	C -6.378125 1.792893 -0.016383
C -7.794916 1.765009 -0.021328	C -7.784219 1.754036 -0.021145
C -8.459636 0.566441 -0.020495	C -8.481087 0.534848 -0.020375
C -4.227713 0.605947 -0.005599	C -4.218703 0.590531 -0.005546
C -5.644648 3.016097 -0.017073	C -5.653657 3.031513 -0.017166
C -4.232853 3.056400 -0.012175	C -4.219024 3.062086 -0.012116
C -3.505930 1.819926 -0.006314	C -3.494236 1.829151 -0.006331
C -2.077445 1.857035 -0.001403	C -2.088141 1.868008 -0.001571
H -1.526067 0.911898 0.003030	H -1.532804 0.924507 0.002789
C -1.412724 3.055603 -0.002273	C -1.391273 3.087196 -0.002343
C -2.135050 4.284263 -0.008060	C -2.096871 4.287464 -0.007859
C -3.505609 4.286460 -0.012877	C -3.501091 4.271666 -0.012691
H -8.283784 -1.609534 -0.014101	H -8.304742 -1.621962 -0.014237
H -5.809187 -1.605918 -0.005302	H -5.817108 -1.593811 -0.005677
Н -8.346294 2.710146 -0.025776	Н -8.339557 2.697537 -0.025505
H -9.553143 0.549667 -0.024303	H -9.574280 0.537635 -0.024127
H -0.319217 3.072377 0.001500	H -0.298081 3.084410 0.001408
Н -1.588577 5.231579 -0.008664	H -1.567618 5.244006 -0.008480
H -4.063173 5.227963 -0.017355	H -4.055252 5.215855 -0.017036
C -3.501246 -0.629555 0.000306	C -3.501156 -0.629540 0.000495
N -2.909123 -1.636683 0.005097	N -2.905432 -1.641397 0.005490
C -6.371114 4.251600 -0.022985	C -6.371204 4.251585 -0.023205
N -6.963235 5.258729 -0.027783	N -6.966929 5.263442 -0.028198

_	_	_
T	T	т

Ground state optimised structure	Excited state optimised structure
C -8.482140 -8.819602 0.075783	C -8.470245 -8.802608 0.075663
C -7.062821 -8.856863 0.024633	C -7.056358 -8.846183 0.024510
C -6.321507 -7.632871 0.010788	C -6.311410 -7.616210 0.010553
C -7.027255 -6.385722 0.048576	C -7.010112 -6.371008 0.048054
C -8.415050 -6.403686 0.097658	C -8.438286 -6.383870 0.098673
C -9.143339 -7.612553 0.111524	C -9.144778 -7.578938 0.112019
C -4.889735 -7.681170 -0.040601	C -4.884623 -7.659216 -0.040553
C -6.259947 -5.119062 0.034242	C -6.265069 -5.141020 0.034161
C -4.828169 -5.167372 -0.017123	C -4.838280 -5.184027 -0.016885
C -4.122433 -6.414524 -0.054892	C -4.139576 -6.429229 -0.054325
C -4.086864 -3.943377 -0.030965	C -4.093332 -3.954054 -0.030845
C -4.776957 -2.702046 0.006503	C -4.786491 -2.720459 0.006639
C -6.152580 -2.674690 0.055624	C -6.183034 -2.688931 0.056524
C -6.886457 -3.880184 0.069233	C -6.914806 -3.868693 0.070276
H -9.033935 -9.765580 0.086180	H -9.028030 -9.745046 0.086435
H -8.977416 -5.467462 0.127070	H -8.993949 -5.445080 0.127825
Н -10.236266 -7.579565 0.150867	H -10.238195 -7.560895 0.151231
Н -4.194267 -1.774755 -0.004389	H -4.209781 -1.789433 -0.003823
H -6.687879 -1.720881 0.084623	H -6.705243 -1.727721 0.085124
Н -7.976297 -3.815152 0.108564	H -8.003825 -3.810877 0.109469
C -2.734634 -6.396546 -0.103899	C -2.711395 -6.416368 -0.104782
Н -2.172217 -7.332742 -0.133252	Н -2.155729 -7.355159 -0.133847
C -2.006351 -5.187682 -0.117740	C -2.004903 -5.221301 -0.118093
H -0.913421 -5.220672 -0.157013	H -0.911481 -5.239345 -0.157188
C -2.667549 -3.980628 -0.082049	C -2.679440 -3.997629 -0.081867
Н -2.115752 -3.034652 -0.092422	H -2.121655 -3.055191 -0.092636
C -4.997126 -10.125541 -0.062081	C -4.966666 -10.111302 -0.063122
H -4.461835 -11.079352 -0.091150	H -4.444462 -11.072511 -0.091844
C -6.372750 -10.098177 -0.012898	C -6.363204 -10.079776 -0.013107
H -6.955438 -11.025470 -0.002022	H -6.939915 -11.010801 -0.002652
C -4.263241 -8.920058 -0.075670	C -4.234893 -8.931541 -0.076836
H -3.173410 -8.985144 -0.115069	H -3.145876 -8.989357 -0.116116

Ground state optimised structure	Excited state optimised structure
C -8.494693 -8.775264 0.076499	C -8.486014 -8.760456 0.076156
C -7.076135 -8.828694 0.025409	C -7.071794 -8.818197 0.025338
C -6.336860 -7.613959 0.011564	C -6.322877 -7.600425 0.011232
C -7.021939 -6.362612 0.048849	C -7.003975 -6.352879 0.048346
C -8.404775 -6.349424 0.098406	C -8.424207 -6.336427 0.099451
C -9.139301 -7.556743 0.112147	C -9.144899 -7.527430 0.112720
C -4.910670 -7.691455 -0.040070	C -4.902985 -7.670562 -0.040101
C -6.239145 -5.109667 0.033732	C -6.246797 -5.130635 0.033762
C -4.812920 -5.187205 -0.017905	C -4.826908 -5.200773 -0.017572
C -4.127840 -6.438538 -0.055190	C -4.145808 -6.448321 -0.054688
C -4.073634 -3.972486 -0.031751	C -4.077991 -3.983001 -0.031680
C -4.805294 -2.757613 0.006767	C -4.813261 -2.778406 0.006787
C -6.180648 -2.804003 0.055238	C -6.212441 -2.825837 0.056014
Н -9.061207 -9.712291 0.086913	H -9.055281 -9.695815 0.086250
H -8.914458 -5.382774 0.126644	H -8.920998 -5.363606 0.127557
H -10.232182 -7.517200 0.151588	H -10.237884 -7.498407 0.152094
H -4.278112 -1.798415 -0.002228	H -4.296324 -1.813659 -0.001879
H -6.771416 -1.882236 0.085753	H -6.783714 -1.890219 0.085860
C -2.744990 -6.451753 -0.104752	C -2.725577 -6.464772 -0.105796
Н -2.235326 -7.418413 -0.132992	Н -2.228785 -7.437592 -0.133902
C -2.010466 -5.244447 -0.118494	C -2.004885 -5.273767 -0.119068
Н -0.917586 -5.283986 -0.157938	H -0.911901 -5.302791 -0.158446
C -2.655084 -4.025911 -0.082843	C -2.663770 -4.040742 -0.082502
H -2.088567 -3.088885 -0.093258	H -2.094503 -3.105383 -0.092598
C -4.969115 -9.997244 -0.061577	C -4.937340 -9.975364 -0.062350
H -4.378434 -10.919072 -0.092088	H -4.366071 -10.910984 -0.092194
C -6.344516 -10.043566 -0.013105	C -6.336523 -10.022792 -0.013127
H -6.871729 -11.002744 -0.004109	H -6.853460 -10.987539 -0.004462
N -6.897357 -3.957684 0.068930	N -6.934271 -3.948424 0.070216
N -4.252349 -8.843703 -0.075273	N -4.215506 -8.852781 -0.076552

Ground state optimised structure	Excited state optimised structure
C -2.593071 0.271434 0.001989	C -2.628288 0.256680 0.063746
C -1.220345 0.267798 0.021140	C -1.221678 0.275450 0.119777
C -0.470949 1.491704 -0.002302	C -0.486758 1.476433 0.019435
C -1.195236 2.740180 -0.018490	C -1.215976 2.721174 -0.038408
C -2.629492 2.697177 -0.053999	C -2.622677 2.667827 -0.142811
C -3.307760 1.503624 -0.046455	C -3.327215 1.450082 -0.091063
C 0.941961 1.495204 0.001078	C 0.949920 1.493723 -0.001797
C -0.491124 3.965083 -0.009275	C -0.499315 3.966376 -0.011106
C 0.921745 3.968586 0.003352	C 0.937283 3.983796 0.014797
C 1.646143 2.720080 -0.002402	C 1.666675 2.738759 -0.033712
C 3.080710 2.762971 -0.021638	C 3.073710 2.791533 -0.133805
H 3.630554 1.818093 -0.048833	Н 3.632272 1.859930 -0.252498
C 3.758900 3.956518 -0.008482	C 3.778093 4.009550 -0.086519
C 3.043749 5.188801 0.029682	C 3.078676 5.203785 0.059391
C 1.670892 5.192511 0.033222	C 1.671888 5.185317 0.110904
Н -3.142996 -0.674760 0.021830	Н -3.159117 -0.697465 0.134623
H -0.673005 -0.678282 0.055882	H -0.683320 -0.667038 0.245896
H -3.179014 3.641974 -0.089168	H -3.180845 3.598746 -0.268510
H -4.401916 1.495903 -0.075729	H -4.418869 1.453728 -0.164959
H 4.853320 3.964164 -0.025283	H 4.869982 4.005503 -0.156825
H 3.593449 6.135016 0.054191	H 3.609281 6.158310 0.126723
H 1.123263 6.138678 0.060174	H 1.133127 6.128482 0.230044
C 1.691054 0.204366 0.010773	C 1.697157 0.221353 0.010772
C 2.343164 -0.233927 1.174661	C 2.641992 -0.054778 1.022178
C 1.756494 -0.594030 -1.142583	C 1.488879 -0.755469 -0.986211
C 3.043785 -1.444405 1.187048	C 3.343474 -1.261966 1.040609
H 2.295467 0.384842 2.077466	H 2.804655 0.685970 1.812189
C 2.459886 -1.802994 -1.133959	C 2.202328 -1.955898 -0.976503
H 1.249705 -0.257489 -2.053678	H 0.771017 -0.550754 -1.787484
C 3.104711 -2.231829 0.031724	C 3.130248 -2.217077 0.039108
H 3.544518 -1.772955 2.103430	H 4.060381 -1.459139 1.844241
H 2.503485 -2.412538 -2.042266	H 2.033703 -2.691938 -1.769282

H 3.653969 -3.178600 0.039761	H 3.684579 -3.160721 0.050057
C -1.240324 5.255883 -0.010421	C -1.246585 5.238795 -0.008055
C -1.291538 6.052929 -1.165437	C -1.035059 6.210159 -1.009674
C -1.907015 5.695387 1.144723	C -2.194675 5.520436 0.998785
C -1.995285 7.261712 -1.167026	C -1.748506 7.410633 -1.008791
H -0.773364 5.715381 -2.069730	H -0.314607 6.001057 -1.807479
C -2.607999 6.905700 1.146944	C -2.896178 6.727707 1.008389
H -1.870566 5.077636 2.048753	H -2.359890 4.784004 1.792287
C -2.654699 7.691756 -0.009979	C -2.679685 7.677344 0.002396
H -2.027694 7.870167 -2.076531	H -1.577308 8.142342 -1.805017
H -3.120204 7.235209 2.056616	H -3.615674 6.929269 1.808611
H -3.204246 8.638393 -0.009913	H -3.234019 8.621042 0.006409

1	
Ground state optimised structure	Excited state optimised structure
-7.678410 -5.354807 -0.064701	C -7.705784 -5.331448 -0.066548
-6.297149 -5.384472 0.000114	C -6.297156 -5.390229 0.000364
-5.544967 -4.193341 -0.013047	C -5.532549 -4.221772 -0.011704
-6.219224 -2.956538 -0.093953	C -6.226335 -2.978821 -0.093593
-7.628072 -2.926883 -0.160212	C -7.622194 -2.915811 -0.160197
-8.340923 -4.112695 -0.145243	C -8.369536 -4.107677 -0.146357
4 070025 4 240(00 0 057012	C 4.072052 4.2511(0.0.05(755

C -7.678410 -5.354807 -0.064701	C -7.705784 -5.331448 -0.066548
C -6.297149 -5.384472 0.000114	C -6.297156 -5.390229 0.000364
C -5.544967 -4.193341 -0.013047	C -5.532549 -4.221772 -0.011704
C -6.219224 -2.956538 -0.093953	C -6.226335 -2.978821 -0.093593
C -7.628072 -2.926883 -0.160212	C -7.622194 -2.915811 -0.160197
C -8.340923 -4.112695 -0.145243	C -8.369536 -4.107677 -0.146357
C -4.078935 -4.240698 0.057012	C -4.073052 -4.251160 0.056755
C -4.126559 -1.742530 -0.044773	C -4.103489 -1.747877 -0.043754
C -3.390633 -2.943668 0.037169	C -3.371981 -2.969015 0.038894
C -1.984532 -2.883328 0.099914	C -1.979333 -2.886236 0.100681
H -1.440969 -3.830375 0.162533	H -1.409483 -3.816410 0.163809
C -1.322717 -1.669003 0.082418	C -1.329394 -1.633516 0.081527
C -2.069043 -0.475466 0.001031	C -2.059274 -0.448128 0.000646
C -3.451026 -0.504287 -0.061780	C -3.463592 -0.504248 -0.062749
H -8.254710 -6.283686 -0.053722	H -8.280125 -6.262383 -0.055129
H -5.747483 -6.327978 0.063503	H -5.774446 -6.347797 0.063094
H -8.144700 -1.963723 -0.222764	H -8.119882 -1.942871 -0.221967
H -9.433262 -4.081044 -0.196682	H -9.459964 -4.067122 -0.197842
H -0.231293 -1.630800 0.131258	H -0.237187 -1.597947 0.131049
H -1.552957 0.489067 -0.012779	H -1.551954 0.519208 -0.013762
H -4.027321 0.424353 -0.124045	H -4.058170 0.412548 -0.125924
N -5.501142 -1.782116 -0.107693	N -5.478909 -1.820322 -0.105904
H -6.011933 -0.900180 -0.169554	H -5.991494 -0.933967 -0.167573
O -3.455458 -5.318419 0.129396	O -3.438139 -5.349616 0.129583

Ground state optimised structure	Excited state optimised structure
C -7.638529 -5.403997 -0.140647	C -7.660114 -5.376568 -0.186742
C -6.270145 -5.388705 0.061367	C -6.279497 -5.384249 0.087321
C -5.545113 -4.182322 0.056267	C -5.540199 -4.197346 0.086701
C -6.217598 -2.952458 -0.144704	C -6.226406 -2.970952 -0.162125
C -7.614606 -2.981100 -0.371408	C -7.596348 -2.969887 -0.456197
C -8.302508 -4.185194 -0.366380	C -8.315915 -4.180192 -0.471153
C -4.093781 -4.223043 0.246803	C -4.102335 -4.211772 0.326025
C -4.128658 -1.741358 -0.096127	C -4.107861 -1.742838 -0.113009
C -3.402150 -2.940004 0.106084	C -3.392607 -2.952752 0.135981
C -1.995944 -2.910352 0.160733	C -1.995988 -2.900663 0.185559
H -1.483496 -3.862790 0.324617	H -1.458947 -3.826584 0.405928
C -1.296940 -1.726651 0.006627	C -1.308669 -1.693265 -0.040495
C -2.017194 -0.540516 -0.220539	C -2.011706 -0.524123 -0.325021
C -3.402890 -0.539119 -0.273775	C -3.419247 -0.547647 -0.358965
Н -8.194027 -6.345609 -0.138196	H -8.216265 -6.318753 -0.180027
H -5.703209 -6.309551 0.226292	H -5.748905 -6.313851 0.307868
H -8.164123 -2.062971 -0.581344	H -8.114242 -2.040561 -0.697978
H -9.380842 -4.177261 -0.552038	H -9.383814 -4.168591 -0.701996
H -0.204538 -1.712567 0.047390	H -0.215568 -1.678954 0.003937
H -1.482748 0.402754 -0.368743	H -1.484205 0.412981 -0.518463
Н -3.919785 0.397957 -0.482647	H -3.960080 0.368626 -0.600339
N -5.517837 -1.752161 -0.124535	N -5.505171 -1.776181 -0.079308
O -3.483655 -5.285567 0.485516	O -3.483737 -5.291068 0.589192
C -6.250531 -0.488503 -0.149592	C -6.237567 -0.515885 -0.005601
Н -6.434007 -0.137496 -1.179757	H -6.442142 -0.117208 -1.015009
H -7.209432 -0.609794 0.369014	H -7.185290 -0.678472 0.521357
H -5.685264 0.274931 0.398772	H -5.646725 0.213307 0.561612

VIII

Ground state optimised structure	Excited state optimised structure

C -8.207864 -1.130867 0.414447	C -8.239858 -1.103355 0.419313
C -6.831735 -1.123853 0.265011	C -6.837300 -1.118323 0.266195
C -6.120361 0.083959 0.119380	C -6.115686 0.070484 0.119557
C -6.821519 1.312966 0.125624	C -6.837346 1.302131 0.128527
C -8.227581 1.299772 0.278580	C -8.231776 1.316028 0.280432
C -8.900493 0.095559 0.419754	C -8.935875 0.103806 0.426838
C -4.662965 0.048303 -0.036629	C -4.665227 0.051801 -0.038334
C -4.753768 2.550067 -0.169818	C -4.736605 2.558933 -0.173009
C -4.004440 1.349877 -0.184188	C -3.994831 1.339344 -0.186068
C -2.605107 1.404780 -0.342329	C -2.607255 1.412183 -0.343895
H -2.065535 0.453070 -0.348740	H -2.046854 0.473738 -0.353349
C -1.947393 2.614527 -0.483454	C -1.956111 2.655758 -0.486011
C -2.698334 3.806056 -0.467100	C -2.688347 3.841264 -0.471010
C -4.076340 3.783328 -0.313644	C -4.088267 3.794893 -0.313426
H -8.751963 -2.072663 0.526886	H -8.778925 -2.048804 0.532499
H -6.250035 -2.050394 0.254608	H -6.277667 -2.057227 0.258276
H -8.783018 2.239867 0.285064	H -8.773176 2.263852 0.285436
Н -9.988497 0.106991 0.536809	H -10.022069 0.122979 0.544902
H -0.861326 2.648088 -0.605915	H -0.869120 2.683242 -0.608348
H -2.193242 4.770632 -0.577100	H -2.190652 4.807976 -0.580219
H -4.640368 4.718265 -0.303757	H -4.665613 4.721190 -0.300966
O -4.022433 -1.024147 -0.043430	O -4.012819 -1.040838 -0.046805
C -6.875282 3.754089 -0.005724	C -6.865522 3.737711 -0.006689
C -7.095388 4.411847 1.206041	C -7.086226 4.386577 1.208678
C -7.358054 4.276417 -1.207186	C -7.340312 4.256489 -1.211803
C -7.810726 5.612465 1.213624	C -7.801759 5.586624 1.213713
H -6.705073 3.979459 2.132730	H -6.699301 3.951803 2.135182
C -8.072856 5.477360 -1.193933	C -8.054870 5.457103 -1.195631
Н -7.170356 3.739534 -2.142391	H -7.148867 3.721818 -2.147056
C -8.298882 6.144577 0.015078	C -8.285097 6.120764 0.014337
Н -7.986839 6.133488 2.159284	H -7.981175 6.105014 2.159942
H -8.454093 5.892609 -2.131479	H -8.432432 5.874119 -2.133621
H -8.858608 7.084653 0.023310	H -8.844869 7.060579 0.022670
N -6.136632 2.516115 -0.016547	N -6.125295 2.497141 -0.017392

_	
T	v
	•
	<u> </u>
-	

Ground state optimised structure	Excited state optimised structure
C -7.246144 0.804968 -1.078809	C -7.215042 0.848116 -1.093238
C -7.252224 0.799295 1.103872	C -7.206019 0.862060 1.108193
C -8.020515 -0.224629 0.622599	C -8.004822 -0.202225 0.597287
Н -8.583072 -0.973482 1.177668	H -8.559107 -0.939998 1.178372
C -6.887742 1.285351 2.429058	C -6.877356 1.299499 2.402110
C -6.049828 2.400930 2.579839	C -6.027417 2.432573 2.594377
C -7.377091 0.633865 3.573309	C -7.386684 0.619017 3.552103
C -5.708683 2.855051 3.854747	C -5.711433 2.852695 3.877929
H -5.667496 2.909947 1.690493	H -5.635398 2.956124 1.718188
C -7.033252 1.091488 4.844006	C -7.056696 1.057921 4.822629
H -8.031408 -0.237205 3.465452	H -8.038407 -0.250575 3.421815
C -6.197564 2.203870 4.990278	C -6.218629 2.175253 4.998764
H -5.054594 3.725960 3.960458	H -5.060045 3.721265 4.016415
Н -7.420722 0.575488 5.727703	H -7.451563 0.530405 5.696303
H -5.928683 2.561672 5.988650	H -5.963663 2.514536 6.007096
C -6.881053 1.288712 -2.407752	C -6.881037 1.289676 -2.380989
C -6.044395 2.402965 -2.565146	C -6.029551 2.422618 -2.574236
C -7.379131 0.622302 -3.537353	C -7.394230 0.602914 -3.526028
C -5.709784 2.845576 -3.845479	C -5.715087 2.837005 -3.859867
H -5.658882 2.918694 -1.680963	H -5.635901 2.949357 -1.700567
C -7.040674 1.069946 -4.813234	C -7.063784 1.038715 -4.797192
H -8.030369 -0.244958 -3.395763	H -8.044493 -0.262248 -3.369522
C -6.205861 2.181613 -4.971139	C -6.224315 2.155381 -4.977946
H -5.056733 3.715418 -3.964295	H -5.063068 3.704558 -4.002833
H -7.431004 0.547610 -5.691897	H -7.459361 0.509390 -5.669702
H -5.941766 2.530845 -5.973992	H -5.969538 2.491419 -5.987574
O -6.750465 1.466537 0.008216	O -6.700736 1.534841 0.011180
N -8.007566 -0.208956 -0.761709	N -8.003318 -0.201421 -0.734249

Ground state optimised structure	Excited state optimised structure
C -6.039342 3.110295 -1.033165	C -6.050643 3.087937 -1.032921
C -5.194639 3.446344 -2.104849	C -4.725536 3.189342 -1.580869
C -4.484776 4.649597 -2.107059	C -4.031138 4.389247 -1.579579
C -4.608629 5.541564 -1.036766	C -4.604579 5.553299 -1.038218
C -5.447309 5.219067 0.035219	C -5.899216 5.487242 -0.493767
C -6.154526 4.014170 0.036747	C -6.607416 4.295461 -0.486889
C -6.792034 1.829754 -1.031839	C -6.772958 1.858140 -1.031193
C -6.230202 0.659467 -1.568020	C -6.220093 0.637865 -1.576957
C -6.937359 -0.542682 -1.568777	C -6.913273 -0.541631 -1.576559
C -8.232396 -0.621553 -1.030732	C -8.248460 -0.651786 -1.030699
C -8.793698 0.548474 -0.493280	C -8.800692 0.568109 -0.483454
C -8.087609 1.751336 -0.495135	C -8.107519 1.747604 -0.483861
H -5.107824 2.765115 -2.957779	H -4.243340 2.309389 -2.011634
H -3.837348 4.894924 -2.954863	H -3.023874 4.425909 -2.006797
H -4.053583 6.484730 -1.038072	H -4.051314 6.497165 -1.040540
H -5.546038 5.905997 0.881691	H -6.358000 6.385645 -0.068488
H -6.791053 3.761074 0.891110	H -7.609756 4.288021 -0.053841
H -5.216781 0.685844 -1.981624	H -5.216422 0.642529 -2.006818
H -6.477961 -1.434570 -2.007350	H -6.428969 -1.420975 -2.006070
H -9.796438 0.516045 -0.054800	H -9.803809 0.563081 -0.052297
H -8.557583 2.649842 -0.082006	H -8.591235 2.626618 -0.053020
C -8.984663 -1.902475 -1.030443	C -8.971944 -1.880889 -1.031474
C -10.376489 -1.919627 -1.224167	C -10.297637 -1.981789 -0.484861
C -8.321114 -3.126096 -0.836942	C -8.415939 -3.088092 -1.578965
C -11.084686 -3.123923 -1.223705	C -10.993271 -3.180975 -0.488686
H -10.908824 -0.978587 -1.397527	H -10.779304 -1.101998 -0.053160
C -9.027138 -4.331639 -0.838957	C -9.125362 -4.279161 -1.574604
H -7.240109 -3.132173 -0.662590	H -7.413284 -3.080929 -2.011276
C -10.412526 -4.335481 -1.031831	C -10.420537 -4.344753 -1.031389
H -12.167596 -3.115437 -1.382916	H -12.000954 -3.217284 -0.062427
H -8.491753 -5.273088 -0.680304	H -8.667148 -5.177343 -2.000963
H -10.966374 -5.279358 -1.032614	H -10.974778 -5.288049 -1.031066

Ground state optimised structure	Excited state optimised structure
C -5.647292 -0.384370 0.011016	C -5.617967 -0.388224 0.010226
C -4.251911 -0.388986 0.011996	C -4.228282 -0.398727 0.011278
C -3.538534 0.826119 0.000382	C -3.499988 0.826110 0.000436
C -4.251525 2.041441 -0.012200	C -4.227886 2.051172 -0.011413
C -5.646907 2.037249 -0.013113	C -5.617575 2.041099 -0.012301
C -6.348696 0.826546 -0.001525	C -6.321912 0.826547 -0.001533
H -6.191423 -1.333857 0.020119	H -6.165090 -1.336207 0.018619
H -3.698435 -1.332577 0.021770	H -3.675404 -1.342661 0.020372
H -3.697750 2.984864 -0.021221	H -3.674704 2.994934 -0.019734
H -6.190737 2.986902 -0.022957	H -6.164392 2.989252 -0.021459
H -7.443035 0.826713 -0.002268	H -7.416133 0.826716 -0.002301
C -2.108515 0.825903 0.001353	C -2.100869 0.825896 0.001394
C -0.887008 0.825720 0.002184	C -0.856816 0.825712 0.002233
C 0.541413 0.825508 0.003151	C 0.527261 0.825507 0.003160
C 1.258139 -0.388235 0.012969	C 1.268517 -0.411529 0.014897
C 1.258511 2.039039 -0.005697	C 1.268897 2.062326 -0.007590
C 2.649353 -0.388440 0.013910	C 2.638967 -0.411729 0.015818
H 0.707994 -1.333512 0.019852	H 0.712301 -1.353335 0.023047
C 2.649725 2.038834 -0.004758	C 2.639347 2.062122 -0.006691
H 0.708654 2.984479 -0.013325	H 0.712970 3.004295 -0.016481
C 3.366451 0.825091 0.005061	C 3.380601 0.825087 0.005057
H 3.199210 -1.333880 0.021538	H 3.194895 -1.353698 0.024720
H 3.199870 2.984112 -0.011641	H 3.195563 3.003928 -0.014852
C 4.794875 0.824880 0.006028	C 4.764681 0.824883 0.005983
C 6.016382 0.824696 0.006858	C 6.008731 0.824701 0.006820
C 7.446399 0.824480 0.007829	C 7.407856 0.824489 0.007776
C 8.159390 -0.390840 0.020643	C 8.135753 -0.400565 0.020147
C 8.159777 2.039582 -0.004016	C 8.136145 2.049319 -0.003591
C 9.554772 -0.386648 0.021557	C 9.525443 -0.390491 0.021038
H 7.605614 -1.334261 0.029846	H 7.582573 -1.344325 0.028877
C 9.555157 2.034966 -0.003037	C 9.525831 2.038821 -0.002547
H 7.606301 2.983171 -0.013971	H 7.583266 2.993249 -0.013092

C 10.256561 0.824052 0.009737	C 10.229779 0.824057 0.009738
H 10.098601 -1.336299 0.031584	H 10.072261 -1.338639 0.030611
H 10.099289 2.984451 -0.012324	H 10.072953 2.986801 -0.011359
H 11.350900 0.823885 0.010480	H 11.324000 0.823890 0.010504

XII

Ground state optimised structure	Excited state optimised structure
C -6.042685 3.104075 -1.033432	C -6.046228 3.096192 -1.032344
C -4.749118 3.179701 -1.577944	C -4.807593 3.229000 -1.717919
C -4.040151 4.383644 -1.575903	C -4.106362 4.430908 -1.719687
C -4.614027 5.537086 -1.030832	C -4.605979 5.548886 -1.036601
C -5.901500 5.475319 -0.487217	C -5.824468 5.442103 -0.351077
C -6.607570 4.269669 -0.487630	C -6.532472 4.244157 -0.348446
C -6.794252 1.823873 -1.034630	C -6.781958 1.844154 -1.031080
C -6.138250 0.598505 -0.829647	C -6.172581 0.610959 -1.419052
C -6.844461 -0.604424 -0.830450	C -6.862649 -0.578292 -1.416550
C -8.234274 -0.628495 -1.035898	C -8.250790 -0.654721 -1.031439
C -8.890248 0.597053 -1.241152	C -8.859118 0.595108 -0.645481
C -8.183806 1.799813 -1.240669	C -8.155729 1.776558 -0.642675
H -4.303168 2.287164 -2.029542	H -4.406014 2.383701 -2.283179
Н -3.036651 4.422515 -2.011630	H -3.160867 4.501246 -2.267127
H -4.059899 6.480903 -1.029718	H -4.052031 6.492556 -1.038341
Н -6.356866 6.369969 -0.050567	H -6.222677 6.303465 0.194910
H -7.604754 4.223633 -0.037157	H -7.465317 4.184217 0.218617
H -5.060791 0.590453 -0.634034	H -5.115313 0.596525 -1.697104
Н -6.312299 -1.541322 -0.634957	H -6.329246 -1.486107 -1.706706
Н -9.967629 0.605580 -1.437107	H -9.911702 0.619341 -0.355215
H -8.715607 2.737008 -1.435784	H -8.682507 2.693327 -0.364399
C -8.985892 -1.907589 -1.035207	C -8.971457 -1.880123 -1.032191
C -10.284505 -1.984102 -0.504313	C -10.359586 -1.956561 -0.647039
C -8.421694 -3.080363 -1.564767	C -8.363139 -3.129944 -1.418192
C -10.991965 -3.186207 -0.504144	C -11.049651 -3.145814 -0.644535

H -10.743209 -1.089330 -0.070417	H -10.892979 -1.048756 -0.356837
C -9.128240 -4.283094 -1.561972	C -9.066527 -4.311394 -1.421000
H -7.417074 -3.046974 -1.999399	H -7.310569 -3.154166 -1.708510
C -10.427186 -4.359145 -1.032249	C -10.440285 -4.379002 -1.032550
H -12.008854 -3.212895 -0.098640	H -12.106908 -3.131387 -0.366442
H -8.657615 -5.185539 -1.966164	H -8.539757 -5.228154 -1.699321
C -11.179491 -5.638926 -1.029839	C -11.176014 -5.631040 -1.031286
C -11.072239 -6.539416 -2.103745	C -10.689781 -6.779002 -1.715197
C -12.016588 -5.978973 0.046851	C -12.414643 -5.763851 -0.345699
C -11.779628 -7.744310 -2.101398	C -11.397787 -7.976947 -1.712566
H -10.443624 -6.279943 -2.962251	H -9.756941 -6.719062 -2.282270
C -12.726570 -7.182267 0.050059	C -13.115876 -6.965757 -0.343932
H -12.093260 -5.300686 0.903284	H -12.816217 -4.918554 0.219569
C -12.610617 -8.070497 -1.024393	C -12.616268 -8.083732 -1.027030
H -11.687885 -8.428189 -2.951298	H -10.999584 -8.838306 -2.258562
H -13.367281 -7.431297 0.902051	H -14.061367 -7.036096 0.203516
H -13.165728 -9.013743 -1.022398	H -13.170218 -9.027401 -1.025290

X	n	n	ſ
4 N 1			L

Ground state optimised structure	Excited state optimised structure
C -1.248108 -1.328392 -0.182194	C -1.257103 -1.347525 -0.149604
C -0.025384 -2.122072 0.000604	C -0.033570 -2.128586 -0.067457
C 1.040572 -1.290236 -0.046679	C 1.067642 -1.284490 -0.017562
C 1.041060 1.286228 -0.087680	C 1.068961 1.281937 -0.061440
C -0.024035 2.120401 -0.070755	C -0.031385 2.125017 -0.139575
C -1.246723 1.323074 -0.236503	C -1.255402 1.342760 -0.200679
N 0.610837 -0.005661 -0.304323	N 0.585474 -0.001508 -0.067615
N -0.760974 -0.006681 -0.392221	N -0.790578 -0.002150 -0.147764
O -2.423635 -1.642583 -0.174463	O -2.440230 -1.686526 -0.207360
O -2.421375 1.639956 -0.257266	O -2.437482 1.680560 -0.282228
H 2.106410 1.487598 0.013004	H 2.137136 1.469274 -0.002810
H 2.106032 -1.489738 0.056567	H 2.135601 -1.471085 0.047149
H -0.020939 -3.199198 0.142291	Н -0.018589 -3.215977 -0.049072
H -0.018600 3.201428 0.037279	Н -0.015339 3.212419 -0.156324

Ground state optimised structure	Excited state optimised structure
C -1.234738 -1.325595 -0.165666	C -1.255306 -1.342696 -0.159105
C -0.016481 -2.117462 0.003490	C -0.033975 -2.121669 -0.073187
C 1.068406 -1.300468 -0.051748	C 1.086107 -1.291065 -0.005526
C 1.064925 1.298291 -0.091444	C 1.085895 1.289081 -0.052780
C -0.019965 2.117509 -0.083627	C -0.035837 2.116976 -0.126122
C -1.235900 1.320327 -0.240616	C -1.256294 1.335011 -0.195884
N 0.631212 -0.004961 -0.302112	N 0.602022 -0.001576 -0.060422
N -0.745944 -0.007756 -0.387551	N -0.788022 -0.003272 -0.148716
O -2.415188 -1.634591 -0.145153	O -2.442215 -1.684261 -0.214961
O -2.415867 1.631122 -0.265661	O -2.441610 1.673634 -0.290438
Н -0.010196 -3.196727 0.137664	H -0.017892 -3.210313 -0.055649
H -0.014410 3.200823 0.012597	Н -0.020333 3.205652 -0.140469
C 2.516416 -1.625969 0.061897	C 2.535109 -1.619687 0.036742
H 3.068256 -1.303923 -0.835627	H 3.041471 -1.380793 -0.914737
H 2.976142 -1.139316 0.936709	H 3.062903 -1.092241 0.846638
H 2.636926 -2.712255 0.172291	H 2.646070 -2.699450 0.210043
C 2.509148 1.624410 0.060491	C 2.527633 1.621297 0.089191
H 2.913792 1.218922 1.002111	H 2.908839 1.387573 1.098594
H 3.105252 1.216921 -0.770828	H 3.155510 1.091922 -0.644268
H 2.635785 2.715484 0.078449	H 2.657496 2.700661 -0.073278

\mathbf{v}	X 7
Л	v
	•

Ground state optimised structure	Excited state optimised structure
C -1.240124 -1.293251 -0.218736	C -1.276213 -1.329898 -0.154024
C -0.019702 -2.048236 0.057539	C -0.037143 -2.079873 -0.052995
C 1.084908 -1.278017 -0.062940	C 1.102649 -1.278471 0.001150
C 1.085186 1.271607 -0.118236	C 1.103281 1.276892 -0.051874
C -0.018781 2.047811 -0.034822	C -0.034774 2.075453 -0.159350
C -1.238803 1.284322 -0.289252	C -1.273806 1.322366 -0.234588
N 0.664415 -0.011801 -0.486064	N 0.617907 -0.001402 -0.060374
N -0.727917 -0.013420 -0.574612	N -0.796744 -0.003177 -0.161148
O -2.412577 -1.608113 -0.182350	O -2.450734 -1.702900 -0.221333
O -2.410197 1.605068 -0.288433	O -2.447085 1.692454 -0.332804
C 2.514127 -1.642753 0.109293	C 2.533198 -1.650333 0.130842
H 3.115265 -1.308430 -0.750000	Н 3.152457 -1.199665 -0.660227
H 2.937471 -1.198153 1.024262	H 2.950064 -1.358422 1.109052
H 2.599307 -2.735463 0.194239	H 2.617029 -2.743258 0.044213
C 2.514419 1.643783 0.034326	C 2.536812 1.651925 0.026387
H 2.975729 1.143792 0.900254	H 3.034392 1.207760 0.902664
H 3.089751 1.376872 -0.865898	H 3.092710 1.354606 -0.878233
H 2.588308 2.729539 0.188329	H 2.605520 2.745610 0.116852
F -0.037504 -3.355726 0.334302	F -0.002593 -3.399856 -0.018974
F -0.035612 3.365907 0.186049	F 0.000742 3.395526 -0.187985

Ground state optimised structure	Excited state optimised structure
C -1.245405 -1.296646 -0.215521	C -1.276560 -1.319859 -0.187440
C -0.026809 -2.083874 0.010774	C -0.048342 -2.096975 -0.087227
C 1.075715 -1.289658 -0.068727	C 1.092756 -1.281860 -0.007516
C 1.086139 1.283859 -0.104182	C 1.106169 1.277389 -0.044011
C -0.007619 2.093484 -0.065364	C -0.027899 2.102103 -0.125251
C -1.232080 1.313931 -0.281095	C -1.263572 1.335279 -0.210577
N 0.649301 -0.005206 -0.403018	N 0.617526 -0.000246 -0.063972
N -0.733959 -0.000474 -0.502141	N -0.790684 0.005641 -0.168332
O -2.421059 -1.605982 -0.192766	O -2.456674 -1.670534 -0.263953
O -2.403665 1.638900 -0.297490	O -2.439266 1.695999 -0.305474
C 2.512657 -1.637368 0.072946	C 2.531029 -1.640576 0.065342
H 3.079257 -1.349500 -0.827271	Н 3.057739 -1.432321 -0.882669
H 2.969582 -1.136393 0.941778	H 3.053047 -1.106029 0.874795
H 2.608113 -2.723313 0.214173	H 2.613773 -2.719718 0.261964
C 2.522847 1.616991 0.071042	C 2.542413 1.623825 0.096490
H 2.904969 1.244407 1.036344	H 2.920916 1.415818 1.112840
Н 3.136676 1.184737 -0.734323	H 3.173574 1.080941 -0.624616
H 2.643782 2.709726 0.059268	H 2.663373 2.701227 -0.089581
Cl -0.064308 -3.773959 0.285925	Cl -0.039353 -3.786855 -0.059368
Cl -0.026462 3.791676 0.156901	Cl -0.002295 3.792088 -0.134196

XVII

Ground state optimised structure	Excited state optimised structure
C -1.186022 -1.310884 -0.277713	C -1.238025 -1.331578 -0.082398
C 0.016561 -2.114948 -0.039371	C -0.018124 -2.126892 -0.008204
C 1.102963 -1.295776 -0.115913	C 1.105894 -1.286004 0.017961
C 1.103053 1.289682 -0.157776	C 1.106316 1.285167 -0.013530
C 0.017246 2.112149 -0.112488	C -0.015117 2.124833 -0.106916
C -1.184439 1.303633 -0.340554	C -1.235051 1.328140 -0.164762
N 0.685414 -0.008493 -0.468196	N 0.632506 -0.000684 -0.023467
N -0.694389 -0.010097 -0.570624	N -0.774292 -0.001459 -0.098973
O -2.367418 -1.627181 -0.257456	O -2.424826 -1.691636 -0.131358
O -2.364232 1.625743 -0.362635	O -2.420656 1.686695 -0.244423
C -0.058456 -3.581725 0.214798	C -0.031756 -3.605581 0.019039
H -0.622965 -3.792244 1.138492	H 0.450439 -4.004082 0.930677
H -0.587963 -4.093161 -0.606624	H -1.073392 -3.959687 -0.011285
H 0.941323 -4.031503 0.314599	H 0.510598 -4.034257 -0.844349
C -0.058512 3.585443 0.100619	C -0.027608 3.603504 -0.134585
Н -0.558078 4.079375 -0.749716	H 0.548427 4.002816 -0.989596
H -0.652578 3.819843 0.999755	H -1.066970 3.956492 -0.214849
H 0.939374 4.033743 0.223125	H 0.419054 4.032601 0.781790
C 2.548450 -1.610537 0.057127	C 2.546722 -1.628267 0.151460
H 3.146355 -1.230096 -0.786305	Н 3.178570 -1.079826 -0.565026
H 2.951346 -1.172572 0.985652	H 2.930670 -1.426185 1.168114
H 2.686341 -2.699629 0.113976	H 2.674934 -2.704027 -0.041969
C 2.549009 1.609070 0.000968	C 2.553012 1.628537 0.006087
H 2.977893 1.130143 0.896327	H 3.106438 1.079572 0.784444
Н 3.130232 1.274636 -0.873697	H 3.041904 1.427685 -0.964762
H 2.679086 2.695390 0.105636	H 2.659926 2.704130 0.212884

XVIII

Ground state optimised structure	Excited state optimised structure
C -1.187001 -1.308979 -0.611868	C -1.281800 -1.373702 -0.333480
C 0.019494 -1.996264 -0.088402	C -0.018078 -2.092370 -0.061081
C 1.060382 -1.144534 -0.254277	C 1.054424 -1.190076 -0.185117
C 1.061765 1.119601 -0.294675	C 1.052485 1.162660 -0.199883
C 0.022267 1.978586 -0.160549	C -0.008161 2.075078 -0.118673
C -1.184007 1.277136 -0.665768	C -1.274205 1.358479 -0.388863
N 0.635412 -0.024625 -0.963173	N 0.469644 -0.016543 -0.521428
N -0.735476 -0.026557 -1.122983	N -0.888190 -0.014438 -0.644903
O -2.348553 -1.671492 -0.598785	O -2.439453 -1.797088 -0.338195
O -2.343582 1.645678 -0.678062	O -2.426823 1.793944 -0.424202
C -0.054273 -3.331217 0.569277	C -0.000979 -3.520369 0.327124
H -0.886150 -3.361315 1.291355	H -1.030612 -3.872854 0.490335
H -0.240980 -4.128162 -0.170485	H 0.455445 -4.141851 -0.466238
H 0.882699 -3.568098 1.097376	H 0.588374 -3.691140 1.245715
C -0.050963 3.334637 0.452714	C 0.011210 3.514200 0.227043
H -0.245087 4.106287 -0.311428	H 0.034209 4.136660 -0.688221
H -0.878039 3.386260 1.179202	H -0.907289 3.786984 0.770652
H 0.888566 3.591319 0.966775	H 0.892784 3.779507 0.832208
C 2.428378 -0.793376 0.277080	C 2.428426 -0.802218 0.324982
H 2.562565 -1.185278 1.296030	H 2.567651 -1.163788 1.358543
H 3.232621 -1.209389 -0.349307	Н 3.244813 -1.224712 -0.279429
C 2.429643 0.785775 0.248006	C 2.446975 0.789708 0.255527
H 2.566432 1.214767 1.251482	H 2.679491 1.240697 1.234013
Н 3.233354 1.177034 -0.394889	H 3.219126 1.131027 -0.451782

X	X

Ground state optimised structure	Excited state optimised structure
C -7.272475 -2.314223 -0.039032	C -7.278523 -2.304665 -0.001625
C -5.872102 -2.276972 0.022903	C -5.857611 -2.270242 0.053292
C -5.227726 -1.049520 0.029683	C -5.202754 -1.065520 0.049387
C -5.917578 0.174794 -0.020656	C -5.910071 0.185380 -0.008486
C -7.328166 0.116167 -0.081320	C -7.342468 0.119324 -0.063629
C -7.990740 -1.091331 -0.090658	C -8.009141 -1.076387 -0.060896
H -5.279682 -3.194732 0.064450	H -5.279705 -3.196812 0.099425
C -5.119676 1.370747 -0.003048	C -5.147537 1.389063 -0.006683
H -7.907850 1.041228 -0.120346	H -7.911126 1.050051 -0.108465
Н -9.082966 -1.115758 -0.139630	Н -9.101211 -1.105429 -0.103073
C -3.767373 1.320758 0.059097	C -3.738068 1.295368 0.052218
C -3.076578 0.046011 0.110139	C -3.059511 0.057278 0.108076
Н -3.145244 2.215778 0.073533	H -3.116140 2.191891 0.056233
N -7.942635 -3.507246 -0.089111	N -7.928073 -3.479246 0.002401
H -7.450194 -4.363660 0.159288	H -7.425955 -4.366871 0.046363
H -8.945527 -3.516412 0.089150	H -8.947200 -3.522428 -0.034676
C -5.802728 2.712054 -0.054971	C -5.818373 2.698908 -0.067038
F -6.650324 2.876816 0.991672	F -6.689422 2.909998 0.975912
F -4.933255 3.742258 -0.026867	F -4.946748 3.732972 -0.053615
F -6.544236 2.846273 -1.183231	F -6.594623 2.858449 -1.190940
O -3.855234 -1.088170 0.092018	O -3.837585 -1.124410 0.104203
O -1.865064 -0.105178 0.167699	O -1.835504 -0.136986 0.162376

Ground state optimised structure	Excited state optimised structure
C -7.945651 -2.065602 0.029681	C -7.914318 -2.087671 -0.004894
C -5.959221 -0.938807 0.807666	C -5.919424 -0.976369 0.804800
C -6.175180 0.147758 -0.051745	C -6.159256 0.154430 -0.060269
C -7.319986 0.089830 -0.880753	C -7.325039 0.088455 -0.892472
C -5.229708 1.236926 -0.037971	C -5.258422 1.248425 -0.049536
H -7.520124 0.921005 -1.564707	H -7.531604 0.929666 -1.560140
C -4.160126 1.170208 0.808646	C -4.148748 1.156068 0.831231
C -3.942746 0.049881 1.688128	C -3.906188 0.052377 1.676825
H -3.416326 1.968821 0.856250	H -3.417791 1.968031 0.884087
C -5.428740 2.415954 -0.941906	C -5.474471 2.437654 -0.928099
O -4.871773 -0.974637 1.648616	O -4.833836 -1.026540 1.641274
O -3.008616 -0.088524 2.476348	O -2.966558 -0.120943 2.477805
H -5.446691 2.102553 -1.999835	H -5.485540 2.164428 -2.001415
Н -4.622994 3.153491 -0.811224	H -4.676371 3.182356 -0.780701
Н -6.392730 2.912009 -0.735727	Н -6.441872 2.935987 -0.721722
C -6.814417 -2.035000 0.861646	C -6.763042 -2.057149 0.834591
H -6.584903 -2.850316 1.550452	Н -6.535956 -2.885970 1.508018
C -8.200089 -0.973823 -0.862366	C -8.192465 -0.984165 -0.887505
N -8.822188 -3.114456 0.072054	N -8.751304 -3.148860 0.021170
Н -9.522368 -3.174350 -0.666412	Н -9.566095 -3.131141 -0.596420
C -8.579484 -4.323652 0.841888	C -8.590491 -4.323460 0.866475
C -9.709414 -5.318546 0.628025	C -9.728685 -5.302876 0.631658
H -8.505430 -4.060225 1.913194	H -8.564804 -4.005257 1.925589
Н -7.609573 -4.774905 0.550542	Н -7.616988 -4.799136 0.643367
Н -9.531550 -6.229762 1.220045	Н -9.597858 -6.187223 1.273831
H -10.676452 -4.888971 0.939355	H -10.702399 -4.845661 0.874854
Н -9.783099 -5.612565 -0.433237	Н -9.749251 -5.643277 -0.417128
C -9.412550 -1.007617 -1.750779	C -9.403355 -1.021018 -1.772860
Н -9.390047 -1.865323 -2.449072	Н -9.378135 -1.878610 -2.470437
H -10.346602 -1.087333 -1.164755	Н -10.339363 -1.095468 -1.189096
Н -9.475451 -0.091370 -2.357793	Н -9.464596 -0.104428 -2.378629

Ground state optimised structure	Excited state optimised structure	
C -7.948830 -2.278395 -0.211493	C -7.953464 -2.269604 -0.222341	
C -6.224530 -0.983269 0.900827	C -6.219358 -0.995737 0.924672	
C -6.127943 -0.066637 -0.159543	C -6.119008 -0.058518 -0.162143	
C -6.972088 -0.298562 -1.265023	C -6.975636 -0.301775 -1.288038	
C -5.184570 1.020729 -0.052913	C -5.202964 1.020510 -0.071289	
Н -6.929174 0.381546 -2.120921	Н -6.922245 0.378292 -2.141659	
C -4.421074 1.119735 1.073011	C -4.414717 1.101687 1.101968	
C -4.521016 0.175078 2.160772	C -4.503528 0.184086 2.174028	
H -3.693151 1.923539 1.204965	H -3.683737 1.906200 1.221617	
C -5.058846 2.016847 -1.166570	C -5.073606 2.011356 -1.182652	
O -5.438096 -0.854851 2.020955	O -5.445114 -0.878273 2.045727	
O -3.871471 0.194161 3.201141	O -3.864490 0.168323 3.239397	
H -4.767635 1.521074 -2.108644	H -4.766810 1.530535 -2.132505	
H -4.303057 2.779998 -0.928141	H -4.321906 2.778120 -0.937489	
Н -6.020938 2.525106 -1.351344	H -6.030425 2.530189 -1.387617	
C -7.094797 -2.065756 0.893019	C -7.093435 -2.054440 0.902981	
Н -7.083675 -2.728808 1.758672	H -7.100381 -2.718344 1.767776	
C -7.848856 -1.365139 -1.304394	C -7.859879 -1.360508 -1.320749	
H -8.468168 -1.499483 -2.191824	H -8.486806 -1.494477 -2.203048	
N -8.850889 -3.313410 -0.228289	N -8.835303 -3.313342 -0.232002	
C -8.903943 -4.269207 0.874031	C -8.899257 -4.264368 0.878888	
C -7.806390 -5.333753 0.832742	C -7.804696 -5.332902 0.828405	
H -9.894266 -4.751084 0.837035	H -9.891798 -4.738284 0.837851	
H -8.868656 -3.715202 1.828628	H -8.855153 -3.706786 1.828560	
H -7.881134 -5.992639 1.714346	H -7.896154 -5.995330 1.705142	
H -7.898172 -5.957292 -0.071590	H -7.894522 -5.949252 -0.080250	
H -6.803112 -4.876406 0.830572	H -6.800719 -4.878557 0.840799	
C -9.671948 -3.575583 -1.407535	C -9.671525 -3.581247 -1.402778	
C -8.932021 -4.290166 -2.539282	C -8.924221 -4.284198 -2.538342	
H -10.101612 -2.624269 -1.767532	H -10.106800 -2.629824 -1.753018	
H -10.525332 -4.187752 -1.074309	H -10.510968 -4.205135 -1.060837	
H -9.602754 -4.431023 -3.403806	H -9.605356 -4.429148 -3.393160	
H -8.056240 -3.710078 -2.874552	H -8.061344 -3.689646 -2.879229	
H -8.577852 -5.281685 -2.212911	H -8.556916 -5.272239 -2.218561	

XXII

Ground state optimised structure	Excited state optimised structure	
C -7.765715 -2.204579 0.365412	C -7.775652 -2.194075 0.364177	
C -6.505252 -2.113297 0.995243	C -6.509719 -2.099519 1.009013	
C -5.680854 -1.025768 0.745756	C -5.670911 -1.030453 0.767233	
C -6.031370 0.014930 -0.133888	C -6.026669 0.019505 -0.132113	
C -7.284506 -0.093223 -0.775154	C -7.289399 -0.097406 -0.784073	
C -8.123361 -1.163744 -0.544816	C -8.138302 -1.156942 -0.552707	
Н -6.136949 -2.875116 1.682467	H -6.156858 -2.857639 1.708296	
C -5.078084 1.079342 -0.299058	C -5.092146 1.100917 -0.313667	
H -7.600317 0.684427 -1.475289	H -7.590567 0.681529 -1.488207	
H -9.074458 -1.200719 -1.076649	H -9.090047 -1.191526 -1.083250	
C -3.894811 1.077859 0.364048	C -3.873785 1.051467 0.383942	
C -3.545641 -0.007057 1.267651	C -3.530813 -0.002744 1.273371	
Н -3.159159 1.875521 0.255266	H -3.128552 1.840388 0.266856	
N -8.620177 -3.244544 0.628287	N -8.613624 -3.240724 0.622339	
C -5.403586 2.222082 -1.224328	C -5.412933 2.209194 -1.225286	
F -6.537428 2.864233 -0.838252	F -6.575926 2.868680 -0.885732	
F -4.421378 3.146809 -1.278344	F -4.438259 3.145156 -1.279024	
F -5.614754 1.787948 -2.495054	F -5.634456 1.796994 -2.524125	
O -4.478732 -1.021867 1.410703	O -4.488328 -1.047698 1.444879	
O -2.510631 -0.097844 1.903846	O -2.497713 -0.137888 1.930201	
C -9.889435 -3.373866 -0.082934	C -9.893246 -3.373793 -0.076609	
H -10.531314 -4.032443 0.524380	H -10.526107 -4.032951 0.537144	
H -10.393896 -2.391905 -0.102680	H -10.390196 -2.389598 -0.096408	
C -9.756831 -3.938236 -1.498033	C -9.756186 -3.941923 -1.490702	
H -9.338499 -4.957902 -1.477317	H -9.338573 -4.961173 -1.470043	
H -10.744932 -3.981504 -1.986850	H -10.747889 -3.986220 -1.970483	
H -9.093297 -3.313194 -2.118393	Н -9.097866 -3.313769 -2.112376	
C -8.222564 -4.321881 1.530300	C -8.216562 -4.322059 1.526361	
H -9.147771 -4.808639 1.879185	H -9.142458 -4.813048 1.862919	
H -7.752691 -3.880021 2.426745	H -7.749931 -3.880784 2.422616	
C -7.296132 -5.359916 0.895083	C -7.282725 -5.346699 0.877942	
H -7.004414 -6.118091 1.641368	H -7.002371 -6.111880 1.620485	
H -7.797042 -5.875605 0.059326	H -7.774293 -5.852557 0.031535	
H -6.377164 -4.893314 0.503545	H -6.360081 -4.871885 0.507069	

XXIII

Ground state optimised structure	Excited state optimised structure
C -7.609449 -2.268479 0.106804	C -7.587925 -2.280554 0.061739
C -5.663372 -1.046895 0.838289	C -5.634259 -1.068759 0.838440
C -5.954020 0.039349 -0.003860	C -5.936690 0.041066 -0.015208
C -7.112229 -0.069018 -0.800073	C -7.114424 -0.069657 -0.821001
C -7.927660 -1.185402 -0.774261	C -7.920371 -1.192910 -0.811218
C -5.065136 1.174438 -0.004578	C -5.080856 1.177314 -0.013029
H -7.375730 0.753826 -1.473570	H -7.378570 0.762298 -1.480763
C -3.967105 1.154845 0.809158	C -3.971028 1.154428 0.860891
C -3.667224 0.038026 1.667978	C -3.656529 0.059354 1.695550
H -3.264345 1.990704 0.843793	H -3.292603 2.011007 0.914162
N -8.435308 -3.375044 0.177276	N -8.378026 -3.396107 0.113830
C -5.351563 2.352128 -0.887634	C -5.375592 2.353731 -0.887061
O -4.544721 -1.032167 1.644406	O -4.514979 -1.070208 1.638480
O -2.702570 -0.061272 2.426660	O -2.701869 -0.066067 2.489817
C -9.487252 -3.568756 -0.814469	C -9.495458 -3.568497 -0.811209
H -10.208115 -4.289064 -0.392814	H -10.199877 -4.276091 -0.347152
Н -9.071255 -4.021777 -1.741430	Н -9.115993 -4.038590 -1.744794
C -10.169973 -2.249497 -1.142579	C -10.164547 -2.240733 -1.128303
H -10.971172 -2.419984 -1.880346	H -10.986620 -2.413368 -1.841235
H -10.637651 -1.846201 -0.225915	H -10.603759 -1.822642 -0.204497
C -9.133198 -1.270086 -1.684874	C -9.129111 -1.281790 -1.706801
H -8.812983 -1.608828 -2.689182	H -8.820199 -1.640618 -2.708452
H -9.568651 -0.264959 -1.818906	Н -9.555052 -0.274654 -1.852713
C -6.454808 -2.192075 0.924659	C -6.423081 -2.196961 0.912741
H -5.381241 2.051265 -1.949200	H -5.403448 2.076272 -1.959111
H -4.582898 3.130385 -0.768157	Н -4.611326 3.137255 -0.761711
Н -6.335015 2.793108 -0.649786	H -6.361983 2.803082 -0.656034
C -6.071242 -3.304917 1.871995	C -6.054199 -3.322095 1.841458
H -5.683780 -2.876397 2.811486	H -5.610429 -2.909286 2.761588
H -5.236062 -3.889285 1.439782	H -5.262024 -3.939806 1.372086
C -7.257179 -4.225608 2.148760	C -7.263976 -4.195776 2.154102
H -7.982213 -3.723268 2.814477	H -7.973954 -3.652289 2.803143

H -6.922792 -5.145924 2.655079	H -6.957760 -5.111005 2.685779
C -7.954964 -4.579631 0.843865	C -7.964237 -4.580375 0.861504
H -7.261825 -5.141102 0.179097	H -7.285760 -5.189626 0.224029
H -8.828662 -5.225943 1.029618	H -8.866845 -5.180851 1.052503

XXIV

Ground state optimised structure	Excited state optimised structure
C -5.260236 -0.745136 2.769162	C -5.261274 -0.735028 2.754537
C -4.864683 0.446944 2.177680	C -4.848738 0.430447 2.149678
C -5.761196 1.371956 1.624818	C -5.763828 1.367106 1.571727
C -7.128769 1.038727 1.697108	C -7.148644 1.021119 1.667908
C -7.559781 -0.138088 2.280726	C -7.581662 -0.139773 2.268521
H -4.481484 -1.403189 3.156153	H -4.487811 -1.390125 3.157045
C -5.246863 2.569771 1.025508	C -5.281370 2.539542 0.956833
Н -7.863805 1.730388 1.271636	H -7.881194 1.711496 1.237410
H -8.629488 -0.350081 2.298507	H -8.651735 -0.348438 2.299003
C -3.902648 2.789059 0.970007	C -3.873777 2.728632 0.930201
C -2.979708 1.825208 1.587039	C -2.962340 1.805324 1.542028
H -5.963071 3.292112 0.629363	H -5.980032 3.270387 0.555492
O -3.509151 0.698219 2.152317	O -3.491266 0.651342 2.144909
O -1.766627 1.987314 1.633759	O -1.730823 1.945057 1.602843
N -7.065857 -2.211615 3.474489	N -7.062823 -2.203533 3.466147
C -6.104000 -3.169328 4.010656	C -6.098025 -3.149021 4.028072
C -5.466959 -4.077103 2.956066	C -5.468946 -4.076467 2.985622
H -6.637108 -3.779929 4.757864	H -6.632980 -3.741444 4.787147
H -5.324550 -2.618161 4.566770	H -5.318489 -2.583438 4.565998
H -4.717451 -4.738518 3.423203	H -4.726760 -4.733445 3.469510
H -6.227777 -4.709748 2.469444	H -6.232449 -4.712751 2.508950
H -4.963304 -3.488025 2.171615	H -4.957996 -3.501833 2.195726
C -8.479301 -2.576352 3.478838	C -8.476573 -2.579337 3.484603
C -8.976404 -3.175092 2.161448	C -8.968058 -3.180669 2.165949
H -9.080569 -1.690592 3.751825	H -9.078121 -1.694700 3.757440
H -8.620948 -3.302298 4.296223	H -8.604581 -3.306472 4.301719
H -10.054867 -3.399972 2.225583	H -10.042980 -3.417028 2.239488
H -8.819309 -2.479236 1.320360	H -8.824316 -2.479293 1.327718
H -8.442633 -4.111441 1.929147	H -8.426018 -4.110622 1.929310
N -3.210513 3.880507 0.431424	N -3.210112 3.832648 0.416155
C -3.561924 4.840436 -0.493755	C -3.578262 4.858870 -0.438246
H -2.218324 3.902381 0.700473	H -2.211899 3.851593 0.676557

O -2.734380 5.702616 -0.804951	O -2.753167 5.752205 -0.667971
C -4.938301 4.800520 -1.107220	C -4.940092 4.848837 -1.083603
H -4.933566 5.467955 -1.979739	H -4.909098 5.553809 -1.925871
H -5.222371 3.781909 -1.418938	Н -5.221317 3.847111 -1.444202
H -5.695875 5.167920 -0.393539	H -5.712842 5.193241 -0.374877
C -6.634264 -1.063047 2.851692	C -6.647666 -1.058356 2.843285

9. Dependence of the range-separation parameter on the basis set and molecular geometry

The effect on the optimal value of γ for different basis sets were explored in earlier studies^{26,27} and found to be minimal. In the course of our work, we have also performed a limited study using a few molecules in the test subset. The results are given in Table S20 and we concluded that the basis set effect on the tuned γ is not significant.

Table S20: Tuned range separation parameters (Bohr⁻¹) with the LC-BLYP* functional, as determined using the 6-31+G(d) and 6-311+G(d) basis sets. The tuning procedure was carried out in the gas phase.

	6-31+G(d)	6-311+G(d)
Ι	0.2219	0.2261
XIII	0.2829	0.2821
XIX	0.2468	0.2467

In addition, a truly consistent approach for calculations carried out with tuned γ necessitates the use of γ that are re-calculated with changes in molecular geometry. For geometry optimizations carried out with a particular γ , the optimal γ corresponding to the minimum should be re-determined and checked for consistency. Otherwise, geometry optimization should be repeated using the new-found γ and the process repeated till self-consistency is obtained. This is indeed a cumbersome procedure. There is previous work²⁸ that reports the dependence of γ on the molecular geometry and found it to be small. We have also considered this aspect in the course of our work and carried out studies albeit on a limited scale and arrived at the same conclusion- variation of γ between optimized molecular geometries in the ground and excited state is not significant. The results are summarized in Table S21.

Table S21: Optimally tuned range separation parameters (Bohr⁻¹) for LC-BLYP*/6-31+G*, as determined at the ground and excited state optimised geometries. The tuning procedure was carried out in the gas phase.

	Ground state opt. geom.	Excited state opt. geom.
Ι	0.2219	0.2187
XIII	0.2829	0.2801

References

- N. Boens, W. Qin, N. Basaric, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefevre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Jr., Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai and A. Miura, *Anal. Chem.*, 2007, **79**, 2137-2149.
- 2. K. A. Abdullah and T. J. Kemp, J. Photochem., 1985, 28, 61-69.
- 3. W. R. Ware and W. Rothman, *Chem. Phys. Lett.*, 1976, **39**, 449-453.
- T. Sander, H. G. Löhmannsröben and H. Langhals, *J. Photochem. Photobiol.*, *A*, 1995, 86, 103-108.
- 5. M. Siegmund and J. Bendig, Ber. Bunsen-Ges. Phys. Chem, 1978, 82, 1061-1068.
- 6. E. Birckner, U. W. Grummt, A. H. Göller, T. Pautzsch, D. A. M. Egbe, M. Al-Higari and E. Klemm, *J. Phys. Chem. A*, 2001, **105**, 10307-10315.
- 7. R. Mabbs, N. Nijegorodov and W. S. Downey, *Spectrochim. Acta, Part A*, 2003, **59**, 1329-1339.
- 8. E. M. Kosower, R. Giniger, A. Radkowsky, D. Hebel and A. Shusterman, J. Phys. Chem., 1986, 90, 5552-5557.
- G. Jones, W. R. Jackson, C. Y. Choi and W. R. Bergmark, J. Phys. Chem., 1985, 89, 294-300.
- T. Chatterjee, D. Roy, A. Das, A. Ghosh, P. P. Bag and P. K. Mandal, *RSC Adv.*, 2013, 3, 24021.
- "Physical Constants of Organic Compounds," in CRC Handbook of Chemistry and Physics, 96th Edition, 2015, W. M. Haynes, ed., CRC Press/Taylor & Francis, Boca Raton, FL.
- 12. W. J. Hehre, J. Chem. Phys., 1972, 56, 2257.
- 13. P. C. Hariharan and J. A. Pople, *Theor. Chem. Acc.*, 1973, **28**, 213-222.
- M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees and J. A. Pople, *J. Chem. Phys.*, 1982, 77, 3654-3665.
- 15. M. J. Frisch, J. A. Pople and J. S. Binkley, J. Chem. Phys., 1984, 80, 3265.
- 16. R. Krishnan, J. S. Binkley, R. Seeger and J. A. Pople, J. Chem. Phys., 1980, 72, 650.
- 17. F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297-3305.

- 18. T. H. Dunning, J. Chem. Phys., 1989, 90, 1007.
- 19. R. A. Kendall, T. H. Dunning and R. J. Harrison, J. Chem. Phys., 1992, 96, 6796.
- 20. D. E. Woon and T. H. Dunning, J. Chem. Phys., 1993, 98, 1358-1371.
- J. Cerezo, F. J. Avila Ferrer, G. Prampolini and F. Santoro, J. Chem. Theory Comput., 2015, 11, 5810-5825.
- 22. F. J. Avila Ferrer, R. Improta, F. Santoro and V. Barone, *Phys. Chem. Chem. Phys.*, 2011, **13**, 17007-17012.
- B. Moore II, R. L. Schrader, K. Kowalski and J. Autschbach, *ChemistryOpen*, 2017, 6, 385-392.
- 24. B. Moore II, H. Sun, N. Govind, K. Kowalski and J. Autschbach, J. Chem. Theory Comput., 2015, 11, 3305-3320.
- 25. A. R. Allouche, J. Comput. Chem., 2011, 32, 174-182.
- 26. M. E. Foster and B. M. Wong, J. Chem. Theory Comput., 2012, 8, 2682-2687
- 27. H. Sun and J. Autschbach, J. Chem. Theory Comput., 2014, 10, 1035-1047
- 28. D. Jacquemin, B. Moore II, A. Planchat, C. Adamo and J. Autschbach, J. Chem. Theory Comput., 2014, 10, 1677-1685