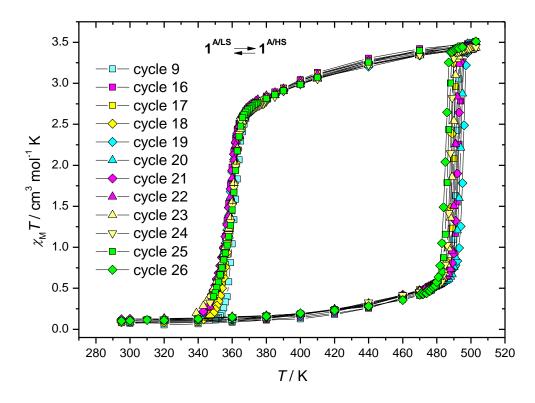
Electronic Supplementary Information

Non-isothermal kinetics of spin crossover

Mark B. Bushuev, *^{a,b} Elena B. Nikolaenkova^c and Viktor P. Krivopalov^c


^{*a*} Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia, E-mail: bushuev@niic.nsc.ru, mark.bushuev@gmail.com; Fax: +7 383 330 94 89; Tel: +7 383 316 51 43.

^b Novosibirsk State University, 2, Pirogova str., Novosibirsk, 630090, Russia.

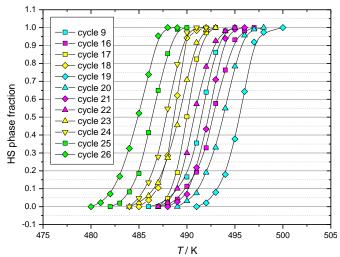
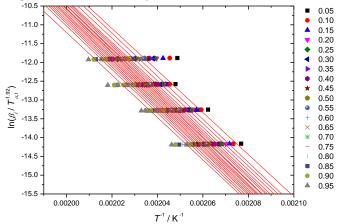

^c N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 9, Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia.

Table of contents


Sample 14-1	
Sample 9	S8
Sample 5-1	S12
Sample 7	S18
Sample 3	

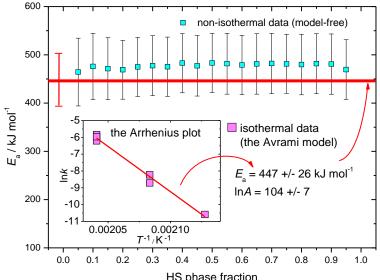

Fig. S1 Typical thermal cycles $\mathbf{1}^{A/LS} \leftrightarrow \mathbf{1}^{A/HS}$ for the sample **14-1**. Scan rates: 1 K min⁻¹ (cycles 9, 19 and 20 cyan), 0.5 K min⁻¹ (cycles 16, 21 and 22, magenta), 0.25 K min⁻¹ (cycles 17, 18, 23 and 24, yellow), 0.1 K min⁻¹ (cycles 25 and 26, green). At 460 K (cycle 15, the heating branch) no variation of the magnetic moment was observed for *ca*. 9 h (M. B. Bushuev, D. P. Pishchur, V. A. Logvinenko, Y. V. Gatilov, I. V. Korolkov, I. K. Shundrina, E. B. Nikolaenkova and V. P. Krivopalov, *Dalton Trans.*, 2016, **45**, 107–120.).

Fig. S2 The normalized heating branches of the $\chi_M T$ vs. T curves for the sample **14-1** (the procedure A was applied to extract the heating branches from the $\chi_M T$ vs. T curves). The solid lines are the B-splines.¹

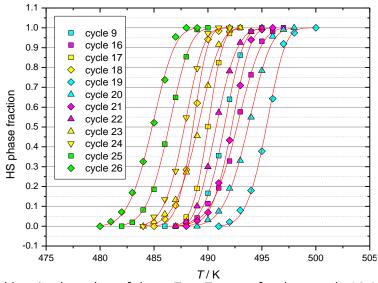
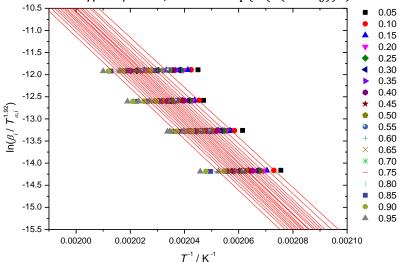
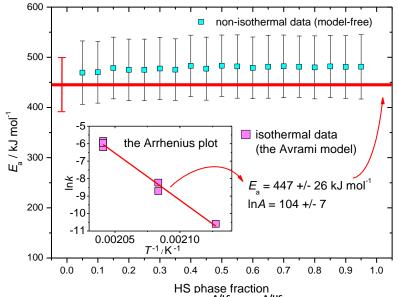
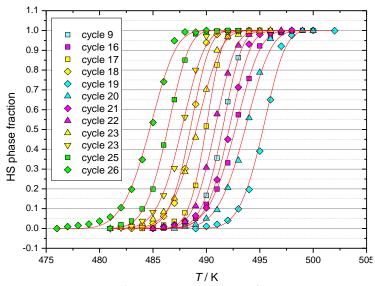


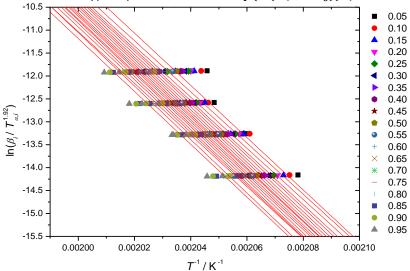
Fig. S3 The Starink plots for the extent of conversion (α) varying from 0.05 up to 0.95 (the sample **14-1**, the procedure A was applied to extract the heating branches from the $\chi_M T$ vs. T curves (see Fig S2)).



HS phase fraction **Fig. S4** Dependency of the activation energy of the $\mathbf{1}^{A/LS} \rightarrow \mathbf{1}^{A/HS}$ transition on the extent of conversion (sample **14-1**, the procedure A was applied to extract the heating branches from the $\chi_M T$ vs. T curves (see Fig S2)). The solid red line is the value obtained by the model-fitting method (the Avrami equation) from isothermal data. Inset: the Arrhenius plot of isothermal data.


¹ The splines have been used to connect the experimental points for all of the samples when the procedure A was applied. The isoconversional values of the activation energies in Fig. 5 are the ones obtained using this way of presentation of the normalized heating branches of the spin crossover curves. In some cases we also have tested fitting the normalized heating branches to the Avrami-type equation (see samples **14-1** and **5-1**), but obtained essentially identical estimates of the activation energy.


Fig. S5 The normalized heating branches of the $\chi_M T$ vs. *T* curves for the sample **14-1** (the procedure A was applied to extract the heating branches from the $\chi_M T$ vs. *T* curves). The solid lines are theoretical curves obtained by fitting to the Avrami-type equation, $\alpha = 1 - \exp(-(k(T - T_0))^n)$.


Fig. S6 The Starink plots for the extent of conversion (α) varying from 0.05 up to 0.95 (the sample **14-1**, the procedure A was applied to extract the heating branches from the $\chi_{M}T$ vs. *T* curves (see Fig S5)).

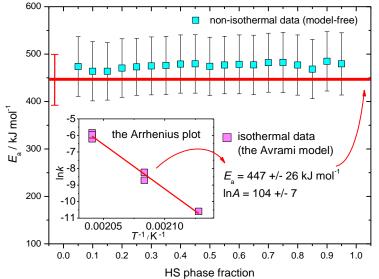
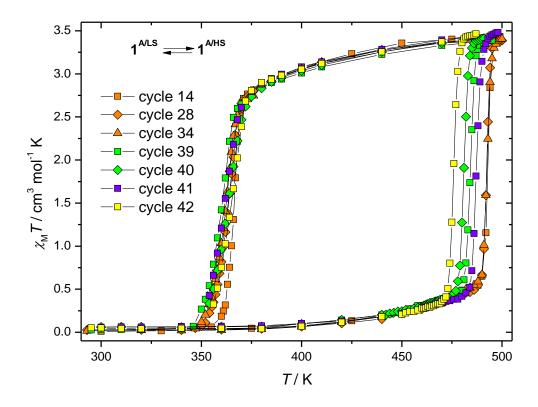

HS phase fraction **Fig. S7** Dependency of the activation energy of the $\mathbf{1}^{A/LS} \rightarrow \mathbf{1}^{A/HS}$ transition on the extent of conversion (sample **14-1**, the procedure A was applied to extract the heating branches from the $\chi_M T$ vs. T curves (see Fig S5)). The solid red line is the value obtained by the model-fitting method (the Avrami equation) from isothermal data. Inset: the Arrhenius plot of isothermal data.

Fig. S8 The normalized heating branches of the $\chi_M T$ vs. T curves for the sample **14-1** (the procedure B was applied to extract the heating branches from the $\chi_M T$ vs. T curves). The solid lines are theoretical curves obtained by fitting to the Avrami-type equation, $\alpha = 1 - \exp(-(k(T - T_0))^n)$.


Fig. S9 The Starink plots for the extent of conversion (α) varying from 0.05 up to 0.95 (the sample **14-1**, the procedure B was applied to extract the heating branches from the $\chi_{M}T$ vs. T curves (see Fig S8)).

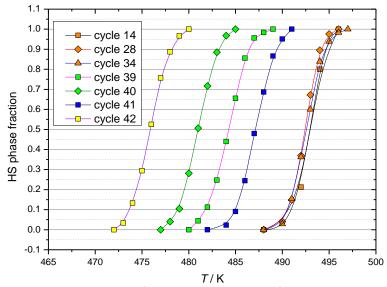
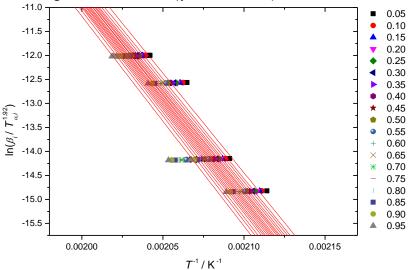
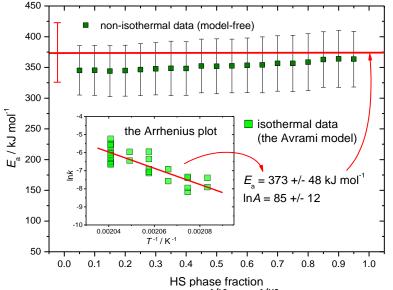
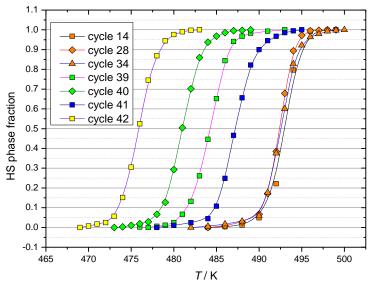
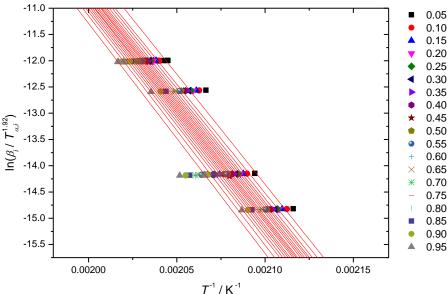

Fig. S10 Dependency of the activation energy of the $\mathbf{1}^{A/LS} \rightarrow \mathbf{1}^{A/HS}$ transition on the extent of conversion (sample **14-1**, the procedure B was applied to extract the heating branches from the $\chi_{M}T$ vs. *T* curves (see Fig S8)). The solid red line is the value obtained by the model-fitting method (the Avrami equation) from isothermal data. Inset: the Arrhenius plot of isothermal data.

Table S1. Sample **14-1**: Information about thermal cycling, temperatures T_c^{\uparrow} and T_c^{\downarrow} (K), hysteresis loop width ΔT (K) and kinetic parameters for the LS \rightarrow HS and the HS \rightarrow LS transitions (the JMAK model and biexponential approximation). The spin transition temperatures T_c^{\uparrow} and T_c^{\downarrow} were determined in "dynamic" experiments by the maximum value of $d(\chi_M T)/dT$; the temperatures at which kinetic measurements have been done are marked by "kin". The hysteresis loop widths are given only for the cycles when both heating and cooling were done in the non-isothermal mode.


sample	cycle	day	$\tau\uparrow$	n	k / s^{-1}	$\tau\downarrow$	τ ₁ / s	τ ₂ / s	ΔT
14	1	1st	ca. 390			370 kin			
	2	1st	425			372			53
	3	1st	402			375			27
	4	1st	407			375			32
	5	134th	401			374			27
	6	134th	405			375			30
14-1	7	179th	490 kin	1.85	1.26×10 ⁻⁴	358			
	8	180th	490 kin	2.33	2.91×10 ⁻³	360 kin	7.46×10 ¹	8.89×10 ²	
	9	180th	492			361			131
	10	187th	490 kin	3.20	2.02×10 ⁻³	360 kin	1.23×10 ²	1.12×10 ³	
	11	187th	490 kin	3.11	2.58×10 ⁻³	360 kin	1.28×10 ²	1.16×10 ³	
	12	242nd	480 kin	3.72	1.64×10 ⁻⁴				
	13	242nd	480 kin	4.17	2.67×10 ⁻⁴	362			
	14	256th	470 kin	4.26	2.52×10 ⁻⁵				
	15	263rd	460 kin						
	16	781st	493			359			134
	17	782nd	490			361			129
	18	795th	489			361			128
	19	876th	496			360			136
	20	876th	494			360			134
	21	885th	492			359			133
	22	886th	491			360			131
	23	901st	490			360			130
	24	902nd	488			361			127
	25	907th	487			362			125
	26	908th	486						

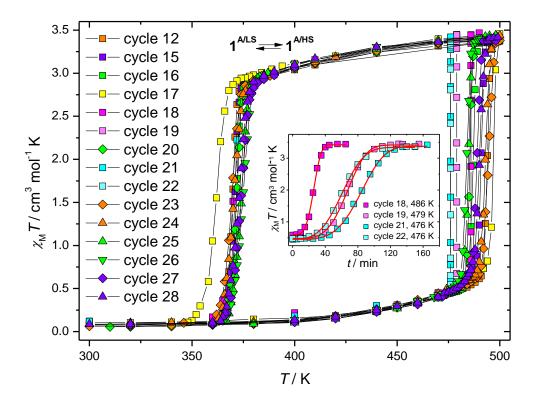

Fig. S11 Typical thermal cycles $\mathbf{1}^{A/LS} \leftrightarrow \mathbf{1}^{A/HS}$ for the sample **9**. Scan rates: 0.9 K min⁻¹ (cycles 14, 28 and 34 orange), 0.5 K min⁻¹ (cycle 41, blue), 0.1 K min⁻¹ (cycles 39 and 40, green), 0.05 K min⁻¹ (cycle 42, yellow).


Fig. S12 The normalized heating branches of the $\chi_{\rm M}T$ vs. *T* curves for the sample **9** (the procedure A was applied to extract the heating branches from the $\chi_{\rm M}T$ vs. *T* curves). The solid lines are the B-splines.

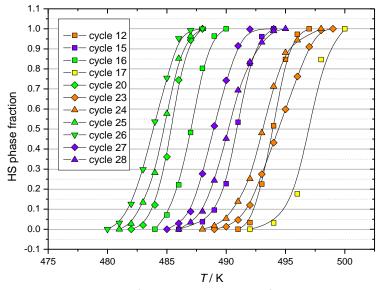

Fig. S13 The Starink plots for the extent of conversion (α) varying from 0.05 up to 0.95 (the sample **9**, the procedure A was applied to extract the heating branches from the $\chi_{M}T$ vs. *T* curves (see Fig S12)).

HS phase fraction **Fig. S14** Dependency of the activation energy of the $\mathbf{1}^{A/LS} \rightarrow \mathbf{1}^{A/HS}$ transition on the extent of conversion (sample 9, the procedure A was applied to extract the heating branches from the $\chi_M T$ vs. T curves (see Fig S12)). The solid red line is the value obtained by the model-fitting method (the Avrami equation) from isothermal data. Inset: the Arrhenius plot of isothermal data.

Fig. S15 The normalized heating branches of the $\chi_{\rm M}T$ vs. *T* curves for the sample **9** (the procedure B was applied to extract the heating branches from the $\chi_{\rm M}T$ vs. *T* curves). The solid lines are the B-splines.


Fig. S16 The Starink plots for the extent of conversion (α) varying from 0.05 up to 0.95 (the sample **9**, the procedure B was applied to extract the heating branches from the $\chi_{M}T$ vs. *T* curves (see Fig S15)).

HS phase fraction **Fig. S17** Dependency of the activation energy of the $\mathbf{1}^{A/LS} \rightarrow \mathbf{1}^{A/HS}$ transition on the extent of conversion (sample **9**, the procedure B was applied to extract the heating branches from the $\chi_M T$ vs. T curves (see Fig S15)). The solid red line is the value obtained by the model-fitting method (the Avrami equation) from isothermal data. Inset: the Arrhenius plot of isothermal data.


Table S2. Sample **9**: Information about thermal cycling, temperatures $T_c\uparrow$ and $T_c\downarrow$ (K), hysteresis loop width ΔT (K) and kinetic parameters for the LS \rightarrow HS (the JMAK model) and the HS \rightarrow LS transitions (biexponential approximation). The spin transition temperatures $T_c\uparrow$ and $T_c\downarrow$ were determined in "dynamic" experiments by the maximum value of $d(\chi_M T)/dT$; the temperatures at which kinetic measurements have been done are marked by "kin". The hysteresis loop widths are given only for the cycles when both heating and cooling were done in the non-isothermal mode.

sample	cycle	day	$\tau\uparrow$	n	k / s^{-1}	T↓	τ ₁	τ ₂	ΔT
5	1	1st	ca. 450			350			
	2	2nd	494 kin	2.20	5.63×10 ⁻⁴	365 kin			
	3	2nd	490 kin	2.37	3.40×10 ⁻³	372			
	4	8th	492 kin	3.16	1.03×10 ⁻³	370 kin	5.61×10 ¹	1.47×10^{3}	
	5	9th	492 kin	3.30	9.40×10 ⁻⁴	367			
	6	116th	492 kin	2.77	1.12×10 ⁻³	370 kin	3.07×10 ¹	1.12×10^{3}	
	7	117th	492 kin	3.67	1.51×10 ⁻³	370 kin	3.64×10 ¹	1.18×10^{3}	
	8	117th	492 kin	2.45	4.07×10 ⁻³	370 kin	4.37×10 ¹	9.74×10 ²	
	9	117th	490 kin	2.26	4.15×10 ⁻³	370 kin	5.07×10 ¹	1.01×10 ³	
	10	118th	490 kin	3.50	1.31×10 ⁻³	370 kin	2.31×10 ²	1.86×10 ³	
	11	118th	490 kin	2.44	3.78×10 ⁻³	370 kin	3.87×10 ¹	9.40×10 ²	
	12	123rd	490 kin	3.98	1.47×10 ⁻³	370 kin	9.43×10 ¹	1.46×10^{3}	
	13	123rd	490 kin	3.56	2.42×10 ⁻³	370 kin	8.24×10 ¹	1.59×10^{3}	
	14	171st	494	1		367			127
	15	173rd	490 kin	3.63	1.50×10 ⁻³	370 kin	6.53×10 ²	5.54×10 ³	
	16	173rd	490 kin	3.05	3.80×10 ⁻³	367 kin	4.96×10 ¹	9.76×10 ²	
	17	173rd	490 kin	2.91	5.35×10 ⁻³	368 kin	2.89×10 ¹	9.38×10 ²	
	18	174th	490 kin	3.51	1.85×10 ⁻³	368 kin	1.67×10^{2}	2.19×10 ³	
	19	174th	490 kin	3.28	2.42×10 ⁻³	368 kin			
	20	175th	486 kin	3.52	8.00×10 ⁻⁴	366 kin	3.21×10 ¹	1.32×10 ³	
	21	175th	486 kin	3.14	9.91×10 ⁻⁴	366 kin	7.03×10 ¹	1.95×10 ³	
	22	203th	490 kin	3.00	1.30×10 ⁻³	370 kin	1.21×10 ²	3.23×10 ³	
	23	203th	490 kin	2.40	2.18×10 ⁻³	370 kin	3.26×10 ¹	1.87×10^{3}	
	24	208th	482 kin	3.71	2.83×10 ⁻⁴	366 kin	5.65×10 ¹	1.61×10 ³	
	25	208th	482 kin	2.75	6.14×10 ⁻⁴	366 kin	3.02×10 ¹	1.26×10^{3}	
	26	211th	488 kin	1.80	1.60×10 ⁻³	366 kin	4.78×10 ¹	1.60×10^{3}	
	27	211th	488 kin	1.75	2.60×10 ⁻³	366 kin	3.38×10 ¹	2.24×10 ³	
	28	327th	493			364			129
	29	373rd	486 kin	2.75	8.55×10 ⁻⁴	366 kin	5.77×10 ¹	1.89×10^{3}	
	30	373rd	486 kin	1.80	1.75×10 ⁻³	366 kin	3.79×10 ¹	1.63×10^{3}	
	31	373rd	486 kin	1.69	2.61×10 ⁻³	366 kin			
	32	450th	482 kin	3.20	3.53×10 ⁻⁴	370 kin	5.90×10 ¹	5.82×10 ³	
	33	450th	482 kin	2.16	6.49×10 ⁻⁴	370 kin	5.93×10 ¹	2.95×10 ³	
	34	491st	493	2.75		363			130
	35	527th	484 kin	2.50	5.14×10 ⁻⁴	370 kin	3.20×10 ¹	5.34×10 ³	
	36	527th	484 kin	2.21	9.92×10 ⁻⁴	370 kin			
	37	533rd	480 kin	2.77	3.68×10 ⁻⁴	370 kin	4.70×10 ¹	2.39×10 ³	
	38	533rd	480 kin	2.25	6.17×10 ⁻⁴	370 kin	8.20×10 ¹	4.12×10 ³	
	39	1217th	484			362			122
	40	1219th	481			364			117
	41	1225th	487			362			125
	42	1226th	476			368			108

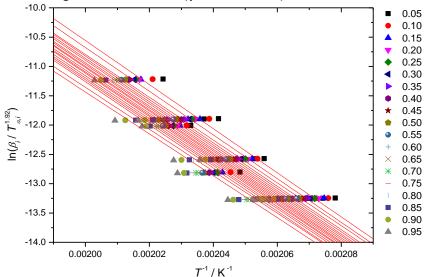
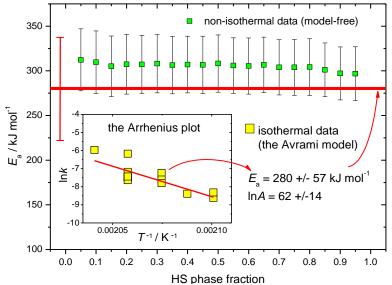
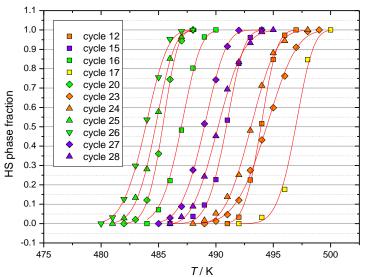
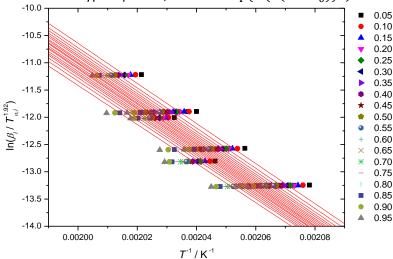
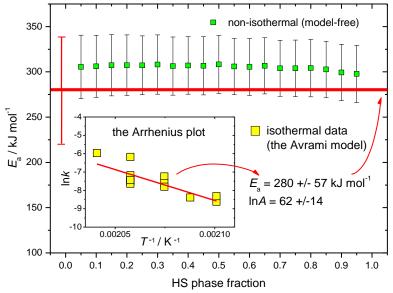


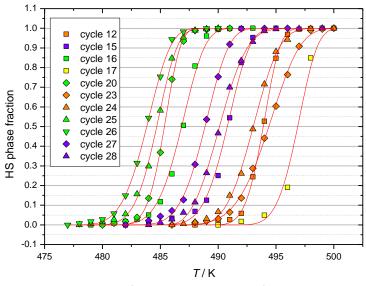
Fig. S18 Typical thermal cycles $\mathbf{1}^{A/LS} \leftrightarrow \mathbf{1}^{A/HS}$ for the sample **5-1**. Scan rates: 2 K min⁻¹ (cycle 17, yellow), 1 K min⁻¹ (cycles 23 and 24, orange), 0.9 K min⁻¹ (cycle 12, orange), 0.5 K min⁻¹ (cycles 27 and 28, violet), 0.4 K min⁻¹ (cycle 15, violet), 0.25 K min⁻¹ (cycles 16, 20, 25 and 26, green).

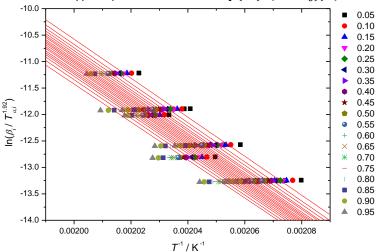

After *ca*. 1.5. years of ageing the sample **5-1** demonstrated wider hysteresis loop (cycle 17) than in preceding thermal cycles (compare with thermal cycles 12, 15 and 16) (Fig. S18). However, on further thermal cycling, the cooling branches of the $\chi_{\rm M}T$ vs. *T* curves showed a good agreement with earlier magnetic cycles (Fig. S18).

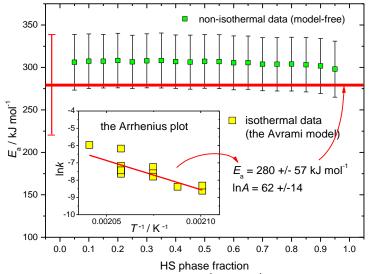

Fig. S19 The normalized heating branches of the $\chi_M T$ vs. T curves for the sample **5-1** (the procedure A was applied to extract the heating branches from the $\chi_M T$ vs. T curves). The solid lines are the B-splines.

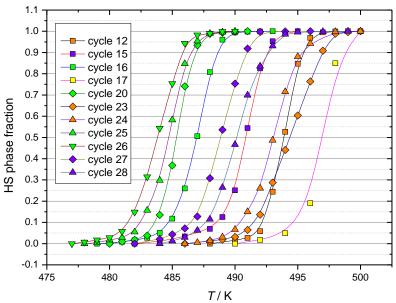

Fig. S20 The Starink plots for the extent of conversion (α) varying from 0.05 up to 0.95 (the sample **5-1**, the procedure A was applied to extract the heating branches from the $\chi_{M}T$ vs. *T* curves (see Fig S19)).

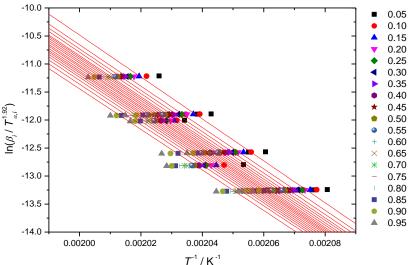

HS phase fraction **Fig. S21** Dependency of the activation energy of the $\mathbf{1}^{A/LS} \rightarrow \mathbf{1}^{A/HS}$ transition on the extent of conversion (sample **5-1**, the procedure A was applied to extract the heating branches from the $\chi_M T$ vs. T curves (see Fig S19)). The solid red line is the value obtained by the model-fitting method (the Avrami equation) from isothermal data. Inset: the Arrhenius plot of isothermal data.


Fig. S22 The normalized heating branches of the $\chi_M T$ vs. T curves for the sample **5-1** (the procedure A was applied to extract the heating branches from the $\chi_M T$ vs. T curves). The solid lines are theoretical curves obtained by fitting to the Avrami-type equation, $\alpha = 1 - \exp(-(k(T - T_0))^n)$.


Fig. S23 The Starink plots for the extent of conversion (α) varying from 0.05 up to 0.95 (the sample **5-1**, the procedure A was applied to extract the heating branches from the $\chi_{M}T$ vs. *T* curves (see Fig S22)).


Fig. S24 Dependency of the activation energy of the $\mathbf{1}^{A/LS} \rightarrow \mathbf{1}^{A/HS}$ transition on the extent of conversion (sample 5-1, the procedure A was applied to extract the heating branches from the $\chi_M T$ vs. T curves (see Fig S22)). The solid red line is the value obtained by the model-fitting method (the Avrami equation) from isothermal data. Inset: the Arrhenius plot of isothermal data.


Fig. S25 The normalized heating branches of the $\chi_M T$ vs. T curves for the sample **5-1** (the procedure B was applied to extract the heating branches from the $\chi_M T$ vs. T curves). The solid lines are theoretical curves obtained by fitting to the Avrami-type equation, $\alpha = 1 - \exp(-(k(T - T_0))^n)$.


Fig. S26 The Starink plots for the extent of conversion (α) varying from 0.05 up to 0.95 (the sample **5-1**, the procedure B was applied to extract the heating branches from the $\chi_{M}T$ vs. *T* curves (see Fig S25)).

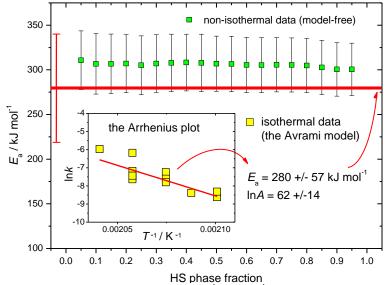
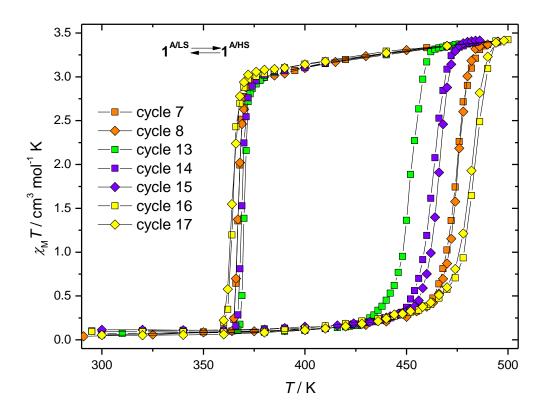

HS phase fraction **Fig. S27** Dependency of the activation energy of the $\mathbf{1}^{A/LS} \rightarrow \mathbf{1}^{A/HS}$ transition on the extent of conversion (sample **5-1**, the procedure B was applied to extract the heating branches from the $\chi_M T$ vs. *T* curves (see Fig S25)). The solid red line is the value obtained by the model-fitting method (the Avrami equation) from isothermal data. Inset: the Arrhenius plot of isothermal data.

Fig. S28 The normalized heating branches of the $\chi_M T$ vs. T curves for the sample **5-1** (the procedure B was applied to extract the heating branches from the $\chi_M T$ vs. T curves). The solid lines are the B-splines.


Fig. S29 The Starink plots for the extent of conversion (α) varying from 0.05 up to 0.95 (the sample **5-1**, the procedure B was applied to extract the heating branches from the $\chi_M T$ vs. T curves (see Fig S28)).

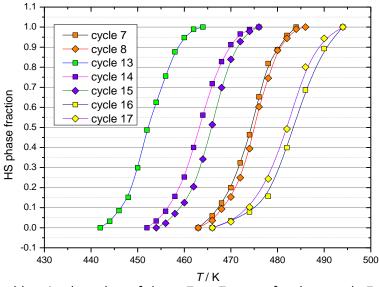
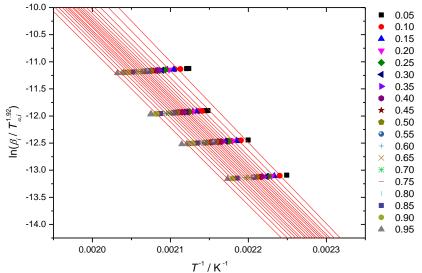
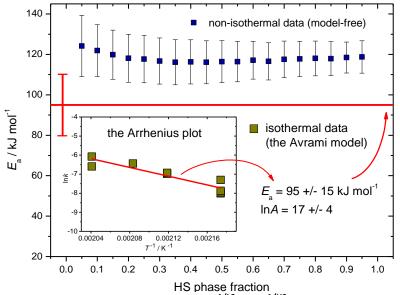
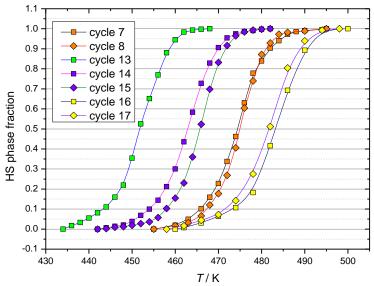
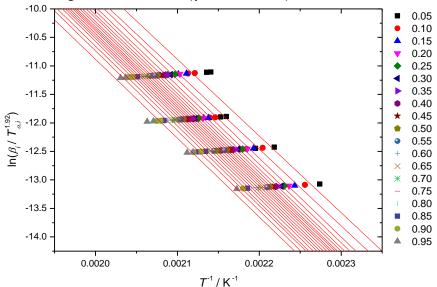

HS phase fraction **Fig. S30** Dependency of the activation energy of the $\mathbf{1}^{A/LS} \rightarrow \mathbf{1}^{A/HS}$ transition on the extent of conversion (sample **5-1**, the procedure B was applied to extract the heating branches from the $\chi_M T$ vs. T curves (see Fig. S28)). The solid red line is the value obtained by the model-fitting method (the Avrami equation) from isothermal data. Inset: the Arrhenius plot of isothermal data.

Table S3. Sample **5-1**: Information about thermal cycling, temperatures T_c^{\uparrow} and T_c^{\downarrow} (K), hysteresis loop width ΔT (K) and kinetic parameters for the LS \rightarrow HS and the HS \rightarrow LS transitions (the JMAK model and biexponential approximation). The spin transition temperatures T_c^{\uparrow} and T_c^{\downarrow} were determined in "dynamic" experiments by the maximum value of $d(\chi_M T)/dT$; the temperatures at which kinetic measurements have been done are marked by "kin". The hysteresis loop widths are given only for the cycles when both heating and cooling were done in the non-isothermal mode.


sample	cycle	day	$\tau\uparrow$	n	k / s^{-1}	$\tau\downarrow$	τ ₁ / s	τ ₂ / s	ΔT
5	1	1st	ca. 440			ca. 320			
	2	18th	ca. 320			ca. 320			
5-1	3	23rd	493			353			140
	4	25th	490 kin	2.16	2.57×10 ⁻³	370 kin		6.26×10 ³	
	5	26th	486 kin	2.09	2.08×10 ⁻³	366 kin	3.30×10 ²	2.89×10 ³	
	6	26th	482 kin	3.15	7.17×10 ⁻⁴	370			
	7	28th	482 kin	3.51	4.98×10 ⁻⁴	370			
	8	28th	482 kin	3.82	4.10×10 ⁻⁴	370			
	9	131st	486 kin	3.77	5.48×10 ⁻⁴	373 kin	5.19×10 ¹	4.88×10 ²	
	10	131st	486 kin	3.92	7.64×10 ⁻⁴	373 kin	9.35×10 ¹	1.07×10^{3}	
	11	131st	486 kin	3.99	5.49×10 ⁻⁴	373 kin			
	12	168th	494			370			124
	13	309th	486 kin	4.00	5.84×10 ⁻⁴	373 kin	1.96×10 ²	1.50×10^{3}	
	14	309th	486 kin	3.65	4.84×10 ⁻⁴	373 kin	2.39×10 ²	1.67×10^{3}	
	15	388th	491			371			120
	16	393rd	487			372			115
	17	905th	497			361			136
	18	906th	486 kin	3.99	5.90×10 ⁻⁴				
	19	906th	479 kin	4.05	2.28×10 ⁻⁴				
	20	921st	485			373			112
	21	997th	476 kin	4.10	1.82×10 ⁻⁴				
	22	997th	476 kin	3.26	2.45×10 ⁻⁴				
	23	1024th	495			370			125
	24	1024th	493			370			123
	25	1031st	485			375			110
	26	1032nd	484			375			109
	27	1038th	489			375			114
	28	1039th	490			374			116


Fig. S31 Typical thermal cycles $\mathbf{1}^{A/LS} \leftrightarrow \mathbf{1}^{A/HS}$ for the sample **7**. Scan rates: 2 K min⁻¹ (cycles 16 and 17, yellow), 0.9 K min⁻¹ (cycles 7 and 8, orange), 0.5 K min⁻¹ (cycles 14 and 15, blue), 0.25 K min⁻¹ (cycle 13, green).


Fig. S32 The normalized heating branches of the $\chi_M T$ vs. *T* curves for the sample **7** (the procedure A was applied to extract the heating branches from the $\chi_M T$ vs. *T* curves). The solid lines are the B-splines.


Fig. S33 The Starink plots for the extent of conversion (α) varying from 0.05 up to 0.95 (the sample **7**, the procedure A was applied to extract the heating branches from the $\chi_{\rm M}T$ vs. *T* curves (see Fig S32)).

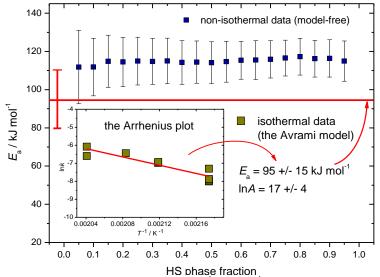
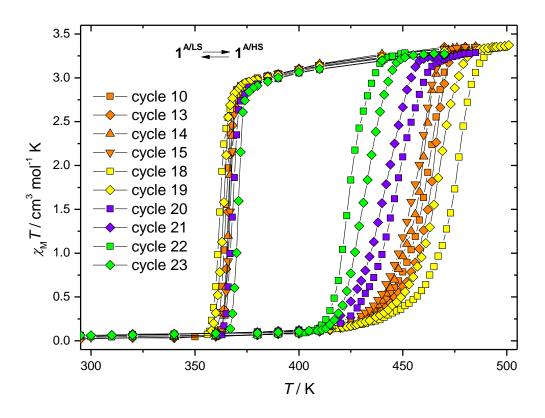

HS phase fraction **Fig. S34** Dependency of the activation energy of the $\mathbf{1}^{A/LS} \rightarrow \mathbf{1}^{A/HS}$ transition on the extent of conversion (sample **7**, the procedure A was applied to extract the heating branches from the $\chi_M T$ vs. *T* curves (see Fig S32)). The solid red line is the value obtained by the model-fitting method (the Avrami equation) from isothermal data. Inset: the Arrhenius plot of isothermal data.

Fig. S35 The normalized heating branches of the $\chi_M T$ vs. T curves for the sample **7** (the procedure B was applied to extract the heating branches from the $\chi_M T$ vs. T curves). The solid lines are the B-splines.


Fig. S36 The Starink plots for the extent of conversion (α) varying from 0.05 up to 0.95 (the sample **7**, the procedure B was applied to extract the heating branches from the $\chi_{M}T$ vs. *T* curves (see Fig S35)).

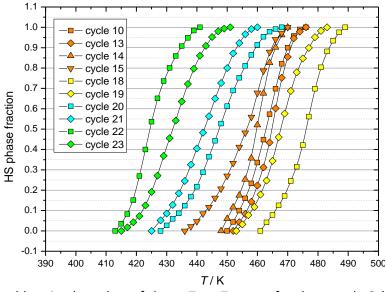
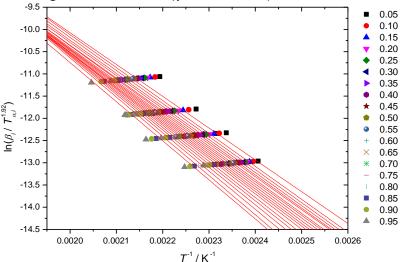
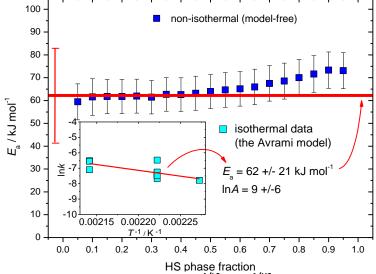
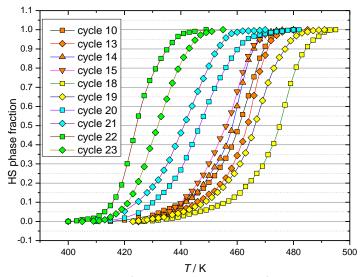
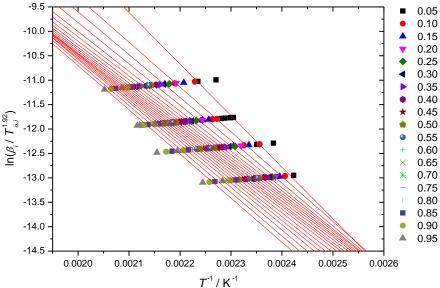

HS bhase fraction **Fig. S37** Dependency of the activation energy of the $\mathbf{1}^{A/LS} \rightarrow \mathbf{1}^{A/HS}$ transition on the extent of conversion (sample **7**, the procedure B was applied to extract the heating branches from the $\chi_M T$ vs. T curves (see Fig S35)). The solid red line is the value obtained by the model-fitting method (the Avrami equation) from isothermal data. Inset: the Arrhenius plot of isothermal data.

Table S4. Sample **7**: Information about thermal cycling, temperatures T_c^{\uparrow} and T_c^{\downarrow} (K), hysteresis loop width ΔT (K) and kinetic parameters for the LS \rightarrow HS and the HS \rightarrow LS transitions (the JMAK model). The spin transition temperatures T_c^{\uparrow} and T_c^{\downarrow} were determined in "dynamic" experiments by the maximum value of $d(\chi_M T)/dT$; the temperatures at which kinetic measurements have been done are marked by "kin". The hysteresis loop widths are given only for the cycles when both heating and cooling were done in the non-isothermal mode.


sample	cycle	day	<i>T</i> ↑	n	k / s^{-1}	T↓	n	k / s^{-1}	ΔT
7	1	1st	-			360 kin	1.56	9.45×10 ⁻⁴	
	2	1st	490 kin	2.37	1.37×10 ⁻³	363 kin	1.87	6.24×10 ⁻³	
	3	1st	490 kin	1.87	2.30×10 ⁻³	365 kin	2.82	3.65×10 ⁻³	
	4	3rd	480 kin	2.09	1.59×10 ⁻³	370 kin	2.58	1.42×10 ⁻³	
	5	4th	472 kin	2.52	9.26×10 ⁻⁴	372 kin	1.35	1.20×10 ⁻³	
	6	4th	472 kin	2.32	9.79×10 ⁻⁴	370 kin	1.56	3.18×10 ⁻³	
	7	11th	476			367			109
	8	12th	475			367			108
	9	13th	460 kin	1.97	6.77×10 ⁻⁴	373 kin	1.42	1.72×10 ⁻⁴	
	10	13th	460 kin	2.14	3.33×10 ⁻⁴	371 kin	2.16	4.07×10 ⁻⁴	
	11	210th	460 kin	2.19	3.51×10 ⁻⁴	370 kin	2.34	4.41×10 ⁻³	
	12	210th	460 kin	2.27	3.81×10 ⁻⁴	370 kin	2.50	3.59×10 ⁻³	
	13	1058th	450			370			80
	14	1063rd	464			369			95
	15	1091st	466			-			
	16	1092nd	482			364			118
	17	1093rd	482			364			118


Fig. S38 Typical thermal cycles $\mathbf{1}^{A/LS} \leftrightarrow \mathbf{1}^{A/HS}$ for the sample **3**. Scan rates: 2 K min⁻¹ (cycles 18 and 19, yellow), 0.9 K min⁻¹ (cycles 10, 13, 14 and 15, orange), 0.5 K min⁻¹ (cycles 21 and 22, blue), 0.25 K min⁻¹ (cycles 22 and 23, green).


Fig. S39 The normalized heating branches of the $\chi_M T$ vs. T curves for the sample **3** (the procedure A was applied to extract the heating branches from the $\chi_M T$ vs. T curves). The solid lines are the B-splines.


Fig. S40 The Starink plots for the extent of conversion (α) varying from 0.05 up to 0.95 (the sample **3**, the procedure A was applied to extract the heating branches from the $\chi_{M}T$ vs. *T* curves (see Fig S39)).

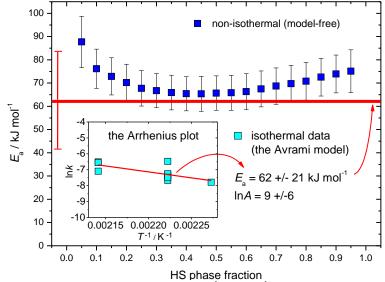

HS phase fraction **Fig. S41** Dependency of the activation energy of the $\mathbf{1}^{A/LS} \rightarrow \mathbf{1}^{A/HS}$ transition on the extent of conversion (sample **3**, the procedure A was applied to extract the heating branches from the $\chi_M T$ vs. T curves (see Fig S39)). The solid red line is the value obtained by the model-fitting method (the Avrami equation) from isothermal data. Inset: the Arrhenius plot of isothermal data.

Fig. S42 The normalized heating branches of the $\chi_M T$ vs. T curves for the sample **3** (the procedure B was applied to extract the heating branches from the $\chi_M T$ vs. T curves). The solid lines are the B-splines.

Fig. S43 The Starink plots for the extent of conversion (α) varying from 0.05 up to 0.95 (the sample **3**, the procedure B was applied to extract the heating branches from the $\chi_{M}T$ vs. *T* curves (see Fig S39)).

HS phase fraction **Fig. S44** Dependency of the activation energy of the $\mathbf{1}^{A/LS} \rightarrow \mathbf{1}^{A/HS}$ transition on the extent of conversion (sample **3**, the procedure B was applied to extract the heating branches from the $\chi_M T$ vs. T curves (see Fig S39)). The solid red line is the value obtained by the model-fitting method (the Avrami equation) from isothermal data. Inset: the Arrhenius plot of isothermal data.

Table S5. Sample **3**: Information about thermal cycling, temperatures T_c^{\uparrow} and T_c^{\downarrow} (K), hysteresis loop width ΔT (K) and kinetic parameters for the LS \rightarrow HS and the HS \rightarrow LS transitions (the JMAK model). The spin transition temperatures T_c^{\uparrow} and T_c^{\downarrow} were determined in "dynamic" experiments by the maximum value of $d(\chi_M T)/dT$; the temperatures at which kinetic measurements have been done are marked by "kin". The hysteresis loop widths are given only for the cycles when both heating and cooling were done in the non-isothermal mode.

sample	cycle	day	$\tau\uparrow$	n	k / s^{-1}	τ↓	n	k / s^{-1}	ΔT
3	1	1st	ca. 385			360 kin	4.40	7.37×10 ⁻⁴	
	2	1st	467 kin	1.76	3.24×10 ⁻⁴	370 kin	3.17	1.14×10 ⁻³	
	3	1st	467 kin	1.72	8.30×10 ⁻⁴	370 kin	3.52	1.00×10 ⁻³	
	4	4th	450 kin	1.73	6.08×10 ⁻⁴	370 kin	2.47	2.22×10 ⁻³	
	5	4th	450 kin	2.18	4.67×10 ⁻⁴	370 kin	2.99	1.40×10 ⁻³	
	6	4th	467 kin	2.14	1.49×10 ⁻³	370 kin	3.10	8.13×10 ⁻⁴	
	7	9th	450 kin	1.77	6.60×10 ⁻⁴	370 kin	2.47	1.67×10 ⁻³	
	8	38th	440 kin	1.84	4.15×10 ⁻⁴	370 kin	1.75	2.52×10 ⁻³	
	9	38th	467 kin	1.99	1.43×10 ⁻³	370 kin	2.68	1.11×10 ⁻³	
	10	39th	464			365			99
	11	86th	450 kin	1.97	6.30×10 ⁻⁴	370 kin	1.69	1.77×10 ⁻³	
	12	86th	450 kin	2.15	1.54×10 ⁻³	370 kin	2.00	1.64×10 ⁻³	
	13	218th	466			366			100
	14	218th	460			366			94
	15	218th	460			367			93
	16	253rd	450 kin	2.06	7.10×10 ⁻⁴	370 kin	1.46	1.17×10 ⁻³	
	17	253rd	450 kin	2.08	5.66×10 ⁻⁴	370 kin	2.00	2.83×10 ⁻³	
	18	1088th	477			362			115
	19	1088th	467			364			103
	20	1089th	448			369			79
	21	1090th	444			-			
	22	1091th	423			-			
	23	1092th	430			372			58