Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2017

Supplementary Information

Schottky barrier and band edges engineering via interfacial structure and strain

for Pt/TiO₂ heterostructure

Xiangchao Ma^{1,*}, Xin Wu¹, Yucheng Wang¹ and Ying Dai^{2,*}

1. School of Physics and Optoelectronic Engineering, Xidian University, Xi'an, 710071, China

2. School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China

Figure S1. Layer-resolved density of states (LDOS) for the unstrained (a) interface A and (b) interface B. The shaded cyan regions represent the LDOS for the O-Ti-O atomic layer in the middle region of TiO₂ of the Pt/TiO₂ interface system. The Fermi level of Pt/TiO₂ interface system is set to 0 eV. The notation Pt/O-Ti-O-l refers to the l-th Pt/O-Ti-O atomic layer starting from the interface. MIGS denotes the so-called Metal-Induced Gap States.

Figure S2. Calculated charge density differences for the unstrained Pt/TiO_2 (001) heterointerfaces.