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A. Processing of HR-TEM images  

Calculation of NC diameters. HR-TEM images exhibit diffraction patterns whose sizes directly 
correspond to those of NCs. In order to determine accurate values for the NC diameters of QD520 
and QD610, we select only the diffraction patterns which are isolated enough. As shown in 
Figures A1 and A2, these patterns are delineated by circles on each image so that the 
measurements of their diameters with ImageJ (software that allows translating pixels into 
nanometers thanks to the scale) enable us to estimate a mean diameter for each kind of QD (i.e. 
QD520 and QD610). For both, we processed seven images for a total of 44 NCs selected. The 
associated statistical dispersions correspond to standard deviations. 
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Figure A1 — Entire HR-TEM image associated to Fig. 2(a) for QD610.
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Calculation of interplanar spacings. The d-spacings between reticular planes are calculated 
with two methods. The first one consists in drawing the profiles of lattice fringes along the 
directed lines [uvw] associated to the planes (hkl), as illustrated in Figure 2b. The second one is 
based on fast Fourier transform (FFT), computed with ImageJ. Table A summarizes the results 
and indicates for each value of dhkl the method we used. 
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Figure A2 — Entire HR-TEM image associated to Fig. 2(a) for QD520.

Planes 
(hkl) 1/√(h2+k2+l2) Average of 

d(hkl)
Standard 
deviation Method

(111) 0.577

3.38 0.11 Profile

3.29 0.12 FFT

3.46 0.08 Profile

3.42 0.13 FFT

(220) 0.354

2.05 0.05 FFT

2.08 0.06 FFT

2.08 0.20 Profile

(311) 0.302 1.74 0.05 FFT

Table A — Results obtained for the 
calculation of the interplanar spacings.
The green cells correspond to QD520 
and the red ones to QD610. 
Fig. 3b depicts the third column as a 
function of the second one.



Calculation of QD concentrations. The manufacturer data only specify the mass of CdTe, i.e. 
25 mg for both QD520 and QD610. If it is easy to deduce the CdTe mass concentration (in g/L) 
according to the added volume of water, we need to use the structural properties of each type of 
QD (i.e. diameter and lattice parameter) to compute the concentrations in terms of QDs, instead 
of CdTe. Here we detail the steps of this calculation. 

Let m be the mass of CdTe (in g) and V the added volume of water (in L). The CdTe 
mass concentration (in g/L) reads: 

 . 

In order to convert Cm(CdTe) into QD molar concentration, we calculate the number of 
CdTe atom-pairs per NC. Since there are 4 CdTe pairs in a unit cell, this number is 
given by: 

 , 

where D is the NC diameter and a the lattice parameter. The QD molar concentration  
(in M, i.e. mol/L) reads therefore: 

 , 

where   g/mol is the molecular weight of CdTe. Last, the QD 
density (in m–3) is given by: 

 , 

where   is the Avogadro constant. 

 

B. Calculation of extinction cross section 
  
The extinction cross section   of QDs is 
directly linked to their absorbance   thanks 
to the Beer-Lambert law: 

 , 

where   is the length of the cuvette. To compute 
 , we can simply divide the 
absorbance   by N and  . However, to 
determine   at   nm as precisely 
as possible, we preferred to measure the 
absorbance (at 488 nm) for different QD 
concentrations. The extinction cross section 
thus derives from the linear regression of 
  with respect to N. The data are plotted 
in Figure B. 
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Figure B — Absorbance at 488 nm drawn with 
respect to QD density. The slopes of these 
curves give access to the extinction cross 
sections, here indicated in m2.
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C. Additional fluorescence spectra 

Figure 4 shows how the fluorescence intensity (Fig. 4a), the wavelength of maximum emission 
(Fig. 4b) and the spectral bandwidth (Fig. 4c) evolve with the QD concentration. Here, Figure C1 
presents the fluorescence spectra from which Figure 4 derives. To insist on the spectral redshift 
and the decreasing of the bandwidth, the spectra are normalized and superimposed. 

To show the accuracy of the model (that reveals especially useful at high concentration), we 
compare, in Figure C2, four experimental spectra with the corresponding modelings deduced from 
Equation (12). 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Figure C1 — Normalized fluorescence spectra of QD520 and QD610 at different concentrations. 
The legend indicates the respective QD densities in m–3.
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Figure C2 – Fluorescence spectra obtained for the two highest concentrations for 
each species (experimental curves) and their modelings.



D. General method to process fluorescence spectra at high concentration 

Here we detail the global method to handle fluorescence spectra in the case of highly concentrated 
samples. We assume that the studied solution contains one fluorescent species, called f, and n 
other non-fluorescent chromophores, called Ci (where i describes the integers from 1 to n). 

Computation of the extinction cross sections of all the species 

First, to determine the extinction cross sections of the fluorophore f and the 
chromophores Ci, the easiest method consists in measuring their respective 
absorbances   and   over the spectral range of interest thanks to UV-visible 
spectroscopy in the case of solutions of which the densities (i.e. concentrations)   
and   are known. The extinction cross sections   and   are then given as functions 
of the wavelength, according to: 

  and  , 

where   is the length of the cuvette. 

Measurement of the reference fluorescence spectrum 

Second, we need to measure the fluorescence spectrum of the fluorophore f in a 
solution wherein its concentration is low enough to be considered non-affected by 
inner filter effects. Obviously, it is much better if the fluorophore is the only species 
present in the solution. In the following, the reference fluorescence spectrum is called 
  and the corresponding concentration  . 

Prediction of the fluorescence spectrum at a given concentration 

If you are interested in forecasting the fluorescence spectrum of the fluorophore f at a 
given concentration  in the presence of the n chromophores Ci (whose 
concentrations are  ), you are henceforth able to use the generalized form of Eq.(12): 

 , 

where   and   are the parameters defined in Fig. 1. If the concentration   is 
unknown, you can use this equation to fit with the experimental spectrum and then 
deduce  . 

Correction of a fluorescence spectrum at a given concentration 

To reconstruct the real fluorescence spectrum   from  , you need to compute: 

 . 
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E. Discussion about right angle, collinear and front-face configurations 

In this article, we acquired the fluorescence spectra in right angle geometry (Fig. 1 and Figure E1-
a). From a physical and conceptual point of view, the equations presented in the paper and 
generalized in ESI, section D, remain applicable in the cases of other geometric configurations. In 
Figure E1-b, we give the example of the collinear configuration. In both cases, the parameters   
and   describe respectively the pathlengths of (i) the incident beam and (ii) the fluorescence 
emission collected by the spectrometer. 

Unlike the right angle configuration, the collinear geometry implies a relation between   and  . 
Indeed, their sum corresponds to the length Z of the cuvette ( ), so that the fitting 
procedure only requires one of the two parameters. Although this relation may constitute an 
advantage for fitting the measurements in the collinear case, the right angle geometry is proper to 
study independently the PIFE (directly related to  ) and the SIFE (related to  ), whereas it is not 
possible in collinear configuration. Moreover, given the common oblong shape of the point spread 
functions (PSF) which limit the spatial resolution of the optical systems (microscope objectives, 
typically) used in spectrometers (Figure E1), the geometric parameters   and   are quite better 
defined in the case of the right angle configuration. As illustrated in Figure E1-a, the intersection 
between the PSFs of the two optical systems, in right angle configuration, can be considered as a 
point: the measurements are then sensitive to the inner filter 
effects at that point (assumption on which our model is based). 
In collinear geometry, we actually observe the inner filter effects 
at several points distributed along the Z-direction. As a result, 
our correction method may be less appropriate in that case. 

For the interested reader, a general discussion about the 
influence of common sample geometries on the observation of 
inner filter effects is provided by J. R. Lakowicz [Instrumentation 
for Fluorescence Spectroscopy, in Principles of Fluorescence Spectroscopy, 
Springer, 2006]. In particular, this shows experimentally how 
crucial inner filter effects are in right angle geometry, and how 
negligible they are in front-face configuration (Figure E2).
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Figure E1 — Sketch and principle of (a) the right angle configuration and (b) the collinear configuration.
(OS1) depicts the optical system which focuses the excitation beam and (OS2) is the optical system 
which collects the emitted light. The oval areas represent the point spread functions (PSF) of the two. 
Their intersection is colored in red.

Figure E2 — Sketch of the front-
face configuration.


