ESI for

Highly efficient Hydrogen evolution reaction by strain and phase engineering in composites of Pt and MoS₂ nano-scrolls

Da Young Hwang[†], Kyoung Hwan Choi[†], Jeong Eon Park[†] and Dong Hack Suh^{†*}

[†]Division of Chemical Engineering, College of Engineering, Hanyang University, Seoul,

04763, Republic of Korea

*Corresponding author. E-mail: dhsuh@hanyang.ac.kr

Figure S1. TEM images of the dispersed MoS_2 sheets.

The concentration of the final exfoliated MoS_2 was measured by using the vacuum filter through a weighed membrane. The multi-layer MoS_2 with size of typically several hundred nanometers is observed.

Figure S2. TEM images of MoS_2 scrolls with a low magnification.

The tube-like morphology scrolled by interaction of MoS_2 with LCAs. The TEM images at a low magnification represent the produced MoS_2 scrolls. TEM images of the synthesized MoS_2 scrolls with the continuously increasing vertical distance along an axis.

Figure S3. TEM images of MoS₂@Pt sheets produced by the attachment of Pt NPs to the MoS₂ surface.

TEM images of the synthesized $MoS_2@Pt$ sheets with low magnification. Magnified TEM images of the few layer MoS_2 surface with homogeneous attachment of Pt nanoparticles with size of 3 nm. HR-TEM images of Pt NPs on MoS_2 surface with a corresponding lattice spacing.

Figure S4. TEM images of MoS₂ scrolls@Pt.

Figure S5. TEM images of MoS₂ scrolls@Pt produced by the attachment of Pt NPs to the MoS₂ scroll surface.

and the second second	Element	Wt%	Wt% Sigma	Atomic %
	S	32.98	1.79	69.88
	Мо	37.29	2.86	26.50
<u>20 nm</u>	Pt	10.43	0.84	3.61
- s	Total:	100.00		100.00
				Mo Mo keV

Figure S6. Calculation of the strain energy for MoS₂ derivatives.

We now discuss that the observed behavior can be explained by considering the various MoS_2 derivatives induced uniaxial strain on Raman modes responsible for E^{1}_{2g} and A_{1g} , correspondingly. The uniaxial strain-induced peak splitting for the E^{1}_{2g} mode enables us to calculate parameters: the Grüneisen parameter, γ , and the shear deformation potential, β , and the solution of the secular equation for the E_{2g} mode $^{\Delta\omega_{E_{2g},1}}$

$$\gamma_{E_{2g}} = -\frac{\Delta\omega_{E_{2g}} + \Delta\omega_{E_{2g}}}{2\omega_{E_{2g}}^{0}(1-\nu)\varepsilon}$$
(1)

$$\beta_{E_{2g}} = \frac{\Delta\omega_{E_{2g}} - \Delta\omega_{E_{2g}}}{\omega_{E_{2g}}^{0}(1+\nu)\varepsilon}$$
⁽²⁾

$$\Delta \omega^{\pm}{}_{E_{2g}} = -\omega^{0}{}_{E_{2g}} \gamma_{E_{2g}} (1-\nu) \varepsilon \pm \frac{1}{2} \beta_{E_{2g}} \omega^{0}{}_{E_{2g}} (1+\nu) \varepsilon$$
(3)

Here, $\Delta\omega$ is the change of frequency in the Raman mode, ${}^{\omega_{E_{2g}}}$ is the E_{2g} peak position at zero strain, v is Poisson's ratio, and ε is the induced uniaxial tensile strain. A Grüneisen parameter of 1.1 and a shear deformation potential of 0.78 for both the monolayer and bilayer MoS₂ attached to a substrate (v = 0.33) have been reported.² In case of formation of MoS₂@Pt scrolls, these calculated parameters are used to estimate the strain applied to a free-standing MoS₂. By inserting ${}^{\omega_{E_{2g}}} = 380.9$ cm⁻¹ from the Raman spectra, $\gamma_{E2g} = 1.1$, $\beta_{E2g} = 0.78$, and a Poisson's ratio of v = 0.27³ for multilayer MoS₂ in Equation 3, we obtained the E¹_{2g}⁻ peak shifts for ${}^{\omega_{E_{2g}}} - \partial \varepsilon$ with an ~4.9 cm⁻¹/% strain, and the E¹_{2g}⁺ peak shifts for ${}^{\omega_{E_{2g}}} - \partial \varepsilon$ with an ~1.1 cm⁻¹/% strain. These results are nearly equal to the DFT calculated tensile strain on the monolayer MoS_2 with the E_{2g}^1 peak shifts having a strain of 4.5 cm⁻¹/%⁴ and the straining monolayer and bilayer MoS_2 with strains of 4.5 ± 0.3 cm⁻¹/% and 4.6 ± 0.4 cm⁻¹/%, respectively.²

Figure S7. Raman spectra of the MoS₂ sheets located at 380.9 and 406.4 cm⁻¹ with FWHMs of 4.6 and 5.0 cm⁻¹, respectively.

The corresponding bands for MoS_2 sheets are located at 380.9 and 406.4 cm⁻¹ with FWHMs of 4.6 and 5.0 cm⁻¹, respectively. The E^{1}_{2g} mode involves in-plane displacement and shear force of Mo and S atoms, whereas the A_{1g} mode involves out-of-plane symmetric displacement and compressive force of S atoms along the c axis.

References

- T. M. G. Mohiuddin, A. Lombardo, R. R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D. M. Basko, C. Galiotis, N. Marzari, K. S. Novoselov, A. K. Geim and A. C. Ferrari, *Physical Review B*, 2009, **79**, 205433.
- 2. H. J. Conley, B. Wang, J. I. Ziegler, R. F. Haglund, Jr., S. T. Pantelides and K. I. Bolotin, *Nano letters*, 2013, **13**, 3626-3630.
- 3. S. Bertolazzi, J. Brivio and A. Kis, *ACS Nano*, 2011, **5**, 9703-9709.
- 4. C. Gong, C. Huang, J. Miller, L. Cheng, Y. Hao, D. Cobden, J. Kim, R. S. Ruoff, R. M. Wallace, K. Cho, X. Xu and Y. J. Chabal, *ACS Nano*, 2013, **7**, 11350-11357.